Kupferphthalocyanin

(Weitergeleitet von Phthalocyaninblau)
Strukturformel
Struktur von Kupferphthalocyanin
Allgemeines
Name Kupferphthalocyanin
Andere Namen
  • Tetrabenzo-5,10,15,20-diaza porphyrin phthalocyanin
  • Kupfer-Phthalocyanin
  • Heliogenblau B
  • Phthalocyanin-Kupfer-II-Komplex
  • Phthalocyaninblau
  • C.I. 74160
  • C.I. Pigment Blue 15
  • C 13
  • CuPc
Summenformel C32H16CuN8
CAS-Nummer
  • 147-14-8
  • 1328-53-6 (chloriert)
PubChem 8978
Kurzbeschreibung

blauer, geruchloser Feststoff[1]

Eigenschaften
Molare Masse 576,07 g·mol−1
Aggregatzustand

fest

Dichte

1,62 g·cm−3 [2]

Schmelzpunkt

>150 °C [1]

Löslichkeit
  • praktisch unlöslich in Wasser[1]
  • löslich in Schwefelsäure[2]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
LD50

>15.000 mg·kg−1 (Ratte, oral)[3]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Kupferphthalocyanin ist eine chemische Komplex-Verbindung zwischen Kupfer und Phthalocyanin. Es ist ein blauer Feststoff, der in Form eines Pulvers oder metallisch glänzender Nadeln vorliegt. Kupferphthalocyanin ist heutzutage das wichtigste blaue Pigment. Es wird unter anderem für Lacke, Kunststoffe und Druckfarben verwendet. Kupferphthalocyaninpigmente besitzen eine hohe Temperaturbeständigkeit und ausgezeichnete Echtheiten gegen Licht, Wetter und chemische Einflüsse.

Geschichte

1927 wurden von Henri de Diesbach und E. von der Weid in der Zeitschrift Helvetica Chimica Acta über die Synthese des Kupferphthalocyanins und dessen Eigenschaften und farbliche Brillanz berichtet, ohne jedoch die wirtschaftliche Bedeutung zu erkennen. 1934 produzierte ICI in Trafford Park (Manchester) das erste Kupferphthalocyanin (CuPc) und brachte es auf den Markt, in Deutschland bekannt unter dem Namen Monastralechtblau B. 1936 kam Bayer mit einem eigenen Herstellungsprozess von CuPc unter dem Handelsnamen Heliogenblau B dazu. Die bisher verwendeten anorganischen Pigmente Ultramarin und Preußisch Blau wurden in den folgenden Jahren weitgehend verdrängt. 1993 wurden bereits mehr als 10.000 Tonnen pro Jahr produziert.[2]

Gewinnung und Darstellung

Kupferphthalocyanin wird technisch durch Reaktion von Phthalsäureanhydrid mit Kupfer(I)-chlorid und Harnstoff sowie Ammoniumheptamolybdat als Katalysator unter Erhitzen hergestellt. Ein Alternativverfahren ist die thermische Reaktion von Phthalsäuredinitril mit metallischem Kupfer oder Kupfersalzen bei Anwesenheit von Ammoniak oder Harnstoff.

Eigenschaften

Kupferphthalocyanin existiert in elf Modifikationen,[4] von denen drei von wirtschaftlicher Bedeutung sind. Es sind dies die thermisch weniger stabile rotstichige α-Form (C.I. Pigment Blue 15:0, 15:1 und 15:2), die stabile grünstichige β-Form (C.I. Pigment Blue 15:3 und 15:4), sowie die stark rotstichige ε-Form (C.I. Pigment Blue 15:6).[5]

Verwendung

Phthalocyaninblau, übliche Lieferform

Der überwiegende Anteil von Kupferphthalocyanin wird als hochechtes Pigment verwendet. Es ist das in der Menge häufigste Pigment für den blauen Farbbereich in Lacken und Anstrichfarben, Kunststoffen und Druckfarben. So sind etwa die blauen Papiertonnen mit diesem Pigment eingefärbt. Verschiedene, besonders qualitätsüberwachte Marken sind als Farbmittel für Konsumprodukte zugelassen, für den Einsatz in Pflegemitteln, Stempelfarben, Kosmetikartikel und für Lebensmittel-Verpackungsmitteln.

Im Bereich Farben und Lacke sind die α- und die β-Modifikation die standardmäßig verwendeten Pigmente für den Bereich Blau. Die ε-Modifikation hat einen grünlicheren Ton, wirkt aber wegen der instabileren Pigmenteigenschaften in Lacken rötlicher. Dies stellt aufgrund dieses Farbwechsels eine Spezialität für Automobil-Metalliclacke dar.[6]

In Druckfarben ist die β-Modifikation von Kupferphthalocyanin (Pigment Blau 15:3) der Cyan-Standard für den Dreifarbendruck.

Kupferphtalocyanin ist eines der am häufigsten verwendeten Donatormaterialen in organischen Solarzellen, wo es durch seine blaue Farbe auch für einen Großteil der Absorption verantwortlich ist.[7]

Das Zentralatom Kupfer stabilisiert die Verbindung gegen Reduktion, sodass das Cu-Dihydrophthalocyanin nur mit starken Reduktionsmittel erhalten wird und unverzüglich wieder zum blauen Pigment oxidiert. Demgegenüber bildet Kobaltphthalocyanin eine stabile, farblose Dihydro-Verbindung, die gegen mäßige Oxidation stabil ist. Es wird in Dokumentenpapieren als Sicherheitsmerkmal gegen oxidative Verfälschung eingesetzt. Die schwachgefärbte Dihydro-Nickelverbindung wird bereits durch Luftsauerstoff zu einem grünstichigen Blaupigment oxidiert – entsprechend der Stellung im PSE der achten Nebengruppe: Kobalt – Nickel – Kupfer.

Ein kleinerer Teil von Kupferphthalocyanin wird chloriert und als Phthalocyaningrün, das am meisten eingesetzte Pigment im grünen Farbbereich, verwendet. Ebenfalls ein kleinerer Teil wird sulfoniert oder sulfochloriert; diese Verbindungen werden im Wesentlichen zu blauen Dispersionsfarbstoffen mit rötlichem Farbstich und guten Echtheiten weiterverarbeitet.

Siehe auch

  • Polychlorkupferphthalocyanin

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 Eintrag zu CAS-Nr. 147-14-8 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 24. Oktober 2007 (JavaScript erforderlich).
  2. 2,0 2,1 2,2 Datenblatt bei InChem (englisch)
  3. Kupferphthalocyanin bei ChemIDplus
  4. P. Erk, H. Hengelsberg: Phthalocyanine Dyes and Pigments in Porphyrin Handbook 19 (2003), S. 105–149, ISBN 0-12-393229-7.
  5. http://www.colour-index.org
  6. W. Herbst, K. Hunger, Industrielle Organische Pigmente, 3. Auflage, Wiley-VCH, Weinheim 2004.
  7. Morphological control of CuPc and its application in organic solar cells Research Paper von Yu-Sheng Hsiao, Wha-Tzong Whang, Shich-Chang Suen, Jau-Ye Shiu und Chih-Ping Chen.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.