Phosphortrioxid

Strukturformel
Strukturformel von Phosphortrioxid
Allgemeines
Name Phosphortrioxid
Andere Namen
  • Diphosphortrioxid
  • Tetraphosphorhexaoxid
Summenformel P2O3
CAS-Nummer
  • 12440-00-5
  • 1314-24-5
  • 10248-58-5
PubChem 123290
Kurzbeschreibung

wachsweiche, farblose, monokline Kristalle[1]

Eigenschaften
Molare Masse 109,96 g·mol−1 bzw. 219,92 g·mol−1
Aggregatzustand

fest

Dichte

2,13 g·cm−3[2]

Schmelzpunkt

23,8 °C[2]

Siedepunkt

175,3 °C[2]

Löslichkeit

gut in Benzol und Schwefelkohlenstoff[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
Piktogramm unbekannt
H- und P-Sätze H: ?
EUH: ?
P: ?
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Phosphortrioxid ist ein Oxid des Elementes Phosphor. Diese chemische Verbindung ist auch unter der Bezeichnung Diphosphortrioxid bekannt. Die im geschmolzenen, gelösten und dampfförmigen Zustand ermittelte Molekülmasse entspricht der Summenformel P4O6. Die wachsweichen, farblosen Kristalle sind sehr giftig.

Darstellung

Phosphortrioxid entsteht bei der Verbrennung von weißem Phosphor bei niedrigen Temperaturen unter Sauerstoff-Mangel. Dabei beobachtet man eine starke Wärmeentwicklung:

$ \mathrm{P_4 + 3 \ O_2 \rightarrow P_4O_6} $
Weißer Phosphor reagiert mit Sauerstoff zu Phosphortrioxid.

Eigenschaften

Physikalische Eigenschaften

Phosphortrioxid ist das Anhydrid der Phosphonsäure. Phosphor liegt in der Oxidationsstufe +3 vor. Die Kristalle dieser Verbindung besitzen eine Dichte von 2,14 g·cm−3. Der Schmelzpunkt liegt bei 24 °C, der Siedepunkt bei 175 °C unter einer Stickstoff-Atmosphäre. Phosphortrioxid löst sich in Benzol und Schwefelkohlenstoff.[1]

Die Struktur des Phosphortrioxids leitet sich vom tetraedrischen Phosphormolekül P4 ab. Ersetzt man die sechs P–P-Bindungen - die Kanten des Tetraeders - jeweils durch P–O–P-Bindungen, so gelangt man zur oben dargestellten Molekülstruktur.

Die Struktur weist eine hohe Symmetrie auf. Neben der tetraedrischen Anordnung der Phosphor-Atome kann für die Sauerstoff-Atome eine oktaedrische Anordnung festgestellt werden. Die vier Flächen der tetraedrischen Grundstruktur werden von vier symmetrisch verknüpften P3O3-Sechsringen umrahmt. Diese Struktur findet man auch beim Arsenik (As4O6) sowie beim Urotropin (N4(CH2)6).

Chemische Eigenschaften

Phosphortrioxid oxidiert an der Luft weiter zu Phosphorpentoxid:

$ \mathrm{P_2O_3 + O_2 \rightarrow P_2O_5} $
Phosphortrioxid oxidiert zu Phosphorpentoxid.

Unter vermindertem Druck wird bei diesem Vorgang Chemilumineszenz beobachtet.

Oberhalb von 210 °C findet eine Zersetzung zu Phosphor und Phosphortetroxid statt:

$ \mathrm{4 \ P_2O_3 \rightleftharpoons 2 \ P + 3 \ P_2O_4} $
Phosphortrioxid disproportioniert zu Phosphor und Phosphortetroxid.

In kaltem Wasser wird Phosphortrioxid zu Phosphonsäure umgewandelt:

$ \mathrm{P_2O_3 + 3 \ H_2O \rightarrow 2 \ H_3PO_3} $
Phosphortrioxid reagiert mit Wasser zu Phosphonsäure.

Die Reaktion mit Chlorwasserstoff führt zur Bildung von Phosphonsäure und Phosphortrichlorid:

$ \mathrm{P_2O_3 + 3 \ HCl \rightarrow H_3PO_3 + PCl_3} $
Phosphortrioxid und Chlorwasserstoff reagieren zu Phosphonsäure und Phosphortrichlorid.

Mit den Halogenen Chlor und Brom reagiert Phosphortrioxid zu Phosphorylhalogeniden, mit Iod zu Diphosphortetraiodid.

Quellen

  1. 1,0 1,1 Helmmut Sitzmann, in: Römpp Online - Version 3.5, 2009, Georg Thieme Verlag, Stuttgart.
  2. 2,0 2,1 2,2 2,3 Arnold F. Holleman, Nils Wiberg: Lehrbuch der Anorganischen Chemie, 102. Auflage, de Gruyter, Berlin 2007, S. 786, ISBN 978-3-11-017770-1.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.