Oxidative Decarboxylierung

Erweiterte Suche

Die oxidative Decarboxylierung ist ein Teilprozess der Zellatmung. Er findet in der Matrix der Mitochondrien statt. Durch diesen Prozess wird die Carboxygruppe von bestimmten α-Ketosäuren in einer Reaktionsfolge abgespalten und die entstehende Hydroxylgruppe des restlichen Moleküls oxidiert. Mögliche Substrate sind hierbei Pyruvat, das z. B. aus der Glykolyse stammt, oder α-Ketoglutarat, ein Metabolit aus dem Citratzyklus. Diese werden enzymatisch zu Acetyl-CoA bzw. Succinyl-CoA umgesetzt. Beide Produkte werden dann im Citratzyklus weiterprozessiert.

Ablauf

Darstellung der oxidativen Decarboxylierung von Pyruvat (R=H) oder α-Ketoglutarat (R=CH2–CH2–COO). Thiaminpyrophosphat (TPP) sowie Liponamid wurden nur ausschnittsweise dargestellt. Für Einzelheiten bitte Text beachten.

Die oxidative Decarboxylierung erfolgt an sehr großen Multienzymkomplexen, bei denen drei Enzyme zusammenwirken: eine Decarboxylase, eine Oxidoreduktase und eine Dehydrogenase. Als Coenzyme werden Thiaminpyrophosphat, Coenzym A und NAD+, als prosthetischen Gruppen FAD und Liponsäure benötigt. Die enzymatische Umsetzung von Pyruvat zu Acetyl-CoA wird durch den Pyruvat-Dehydrogenase-Komplex katalysiert. α-Ketoglutarat wird im α-Ketoglutarat-Dehydrogenase-Komplex zu Succinyl-CoA umgesetzt. Die allgemeine Katalyse der oxidativen Decarboxylierung ist am Beispiel von Pyruvat dargestellt (vgl. Schema im Bild, R=H):

  • Das Pyruvat lagert sich an Thiaminpyrophosphat (TPP), einem Derivat des Vitamin B1, an. Dann wird die Säuregruppe des Pyruvats als CO2 abgespalten, so dass Hydroxyethyl-TPP entsteht (Schritt A im Schema). Dies wird von der Pyruvat-Dehydrogenase-Komponente (E1) katalysiert.
  • Die Hydroxyethyl-Gruppe wird auf Liponamid übertragen. Es entsteht ein Thioester, das Acetyl-Dihydroliponamid, als Oxidationsmittel dient also die Disulfidgruppe. Das TPP wird dabei regeneriert (Schritt B). Auch diese Reaktion wird von der Pyruvat-Dehydrogenase-Komponente katalysiert.
  • Die Acetylgruppe wird auf Coenzym A übertragen, es entsteht Acetyl-CoA. Katalysiert wird dieser Schritt durch die Dihydrolipoyl-Transacetylase (E2). Dies ist chemisch gesehen eine Umesterung (Schritt C).
  • Die Liponsäure wird durch eine Dihydrolipoyl-Dehydrogenase (E3) regeneriert, indem das Dihydroliponamid mit enzymgebundenem FAD zu Liponsäure oxidiert wird (Schritt D). FAD ist aber nicht kovalent enzymgebunden.[1]
  • Schließlich wird FAD durch Reduktion von NAD+ zu NADH durch dieselbe Dehydrogenase regeneriert (Schritt E). Hierbei ist das Elektronentransferpotential von FADH2 auf NAD+ erhöht, da es mit dem Enzym assoziiert ist.[2]

Die Bilanz der oxidativen Decarboxylierung für Pyruvat lautet:

$ \mathrm {CH_{3}COCOOH+NAD^{+}+CoA{\text{-}}SH\longrightarrow CH_{3}CO{\text{-}}SCoA+NADH+H^{+}+CO_{2}} $

Eine Störung dieser Stoffwechselreaktion hat schwerwiegende Auswirkungen, da die Elektronentransportkette z. B. beim Abbau der Glucose zu CO2 unterbrochen wird.

Allgemeinere Bedeutung der Bezeichnung Oxidative Decarboxylierung

In der organischen Chemie generell bezeichnet oxidative Decarboxylierung eine Reaktion, bei der einer Carbonsäure unter Oxidation der Kohlenstoffkette Kohlenstoffdioxid abgespalten wird. Dies kann beispielsweise durch Erhitzen oder durch Oxidation mit Bleitetraacetat geschehen (Kochi-Reaktion).[3] In der Hunsdiecker-Reaktion erfolgt die oxidative Decarboxylierung über Silbersalze.[3].

Einzelnachweise

  1. Rassow et al. Biochemie, S. 105.
  2. Berg et al Biochemie; S. 538.
  3. 3,0 3,1 Hans Peter Latscha, Uli Kazmaier und Helmut Alfons Klein: Organische Chemie: Chemie-Basiswissen II; 5. Auflage. Springer Verlag, Berlin 2002; ISBN 3-540-42941-7; S. 257.

Literatur

  • Jeremy M. Berg, Lubert Stryer und John L. Tymoczko: Biochemie. Spektrum Akademischer Verlag; 6. Auflage 2007; ISBN 3827418003; S. 533–538.
  • Joachim Rassow, Karin Hauser, Roland Netzker und Rainer Deutzmann: Biochemie. Thieme Verlag Stuttgart; 2. Auflage 2008; ISBN 978-3-13-125352-1; S. 104–109.

Weblinks

Wikibooks Wikibooks: Pyruvat-Dehydrogenase-Komplex – Lern- und Lehrmaterialien
Wikibooks Wikibooks: α-Ketoglutarat-Dehydrogenase – Lern- und Lehrmaterialien

Die cosmos-indirekt.de:News der letzten Tage

22.06.2022
Teilchenphysik
Lange gesuchtes Teilchen aus vier Neutronen entdeckt
Ein internationales Forschungsteam hat nach 60 Jahren vergeblicher Suche erstmals einen neutralen Kern entdeckt – das Tetra-Neutron.
22.06.2022
Festkörperphysik
Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
15.06.2022
Exoplaneten
Zwei neue Super-Erden in der Nachbarschaft
Unsere Sonne zählt im Umkreis von zehn Parsec (33 Lichtjahre) über 400 Sterne und eine stetig wachsende Zahl an Exoplaneten zu ihren direkten Nachbarn.
15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
13.06.2022
Quantenphysik
Photonenzwillinge ungleicher Herkunft
Identische Lichtteilchen (Photonen) sind wichtig für viele Technologien, die auf der Quantenphysik beruhen.
10.06.2022
Kometen und Asteroiden | Sonnensysteme
Blick in die Kinderstube unseres Sonnensystems
Asteroiden sind Überbleibsel aus der Kinderstube unseres Sonnensystems und mit rund 4,6 Milliarden Jahren ungefähr so alt wie das Sonnensystem selbst.
07.06.2022
Galaxien | Sterne
Das Ende der kosmischen Dämmerung
Eine Gruppe von Astronomen hat das Ende der Epoche der Reionisation auf etwa 1,1 Milliarden Jahre nach dem Urknall genau bestimmt.