Strukturformel
Strukturformel von Nilblau
Allgemeines
Name Nilblau
Andere Namen
  • 5-Amino-9-(diethylamino) benzo[a]phenoxazin-7-ium
  • C.I. 51180
  • Basic Blue 12
Summenformel C20H20N3O+
CAS-Nummer
  • 2381-85-3 (Hydrochlorid)
  • 3625-57-8 (Hydrogensulfat)
  • 53340-16-2 (Perchlorat)
Kurzbeschreibung
  • dunkelgrüner Feststoff (Chlorid)[1]
  • dunkelgrünes bis blau oder schwarzes Pulver (Sulfat)[1]
Eigenschaften
Molare Masse 318,39 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

>300 °C[2]

Löslichkeit

löslich in Wasser (50 g·l−1 bei 25 °C)[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]

Sulfat

keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
EU-Gefahrstoffkennzeichnung [4][2]
Reizend
Reizend
(Xi)
R- und S-Sätze R: 36/38
S: 22
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Nilblau, oft auch als Nilblau A (meist nur das Hydrogensulfat) bezeichnet, ist ein fluoreszierender Phenoxazin-Farbstoff.

Als Indikatorfarbstoff zeigt Nilblau im saurem Milieu eine blaue Farbe und ist im Alkalischen rot.[5]

Durch Kochen einer Lösung von Nilblau mit Schwefelsäure entsteht der Farbstoff Nilrot.

Eigenschaften

Nilblauhydrochlorid in Wasser in unterschiedlicher Konzentration.
V.l.n.r.: 1000 ppm, 100 ppm, 10 ppm, 1 ppm, 100 ppb.
Nilblau in Wasser bei verschiedenen pH-Werten.
V.l.n.r.: pH 0, pH 4, pH 7, pH 10, pH 14.
Nilblau in Wasser (untere Phase) und Ethylacetat (obere Phase) bei Tageslicht.
V.l.n.r.: pH 0, pH 4, pH 7, pH 10, pH 14
Nilblau in Wasser (untere Phase) und Ethylacetat (obere Phase) im UV-Licht (366 nm).
V.l.n.r.: pH 0, pH 4, pH 7, pH 10, pH 14
Nilblau (freie Base) bei Tageslicht (obere Reihe) und UV-Licht (366 nm, untere Reihe) in verschiedenen Lösungsmitteln.
V.l.n.r.: 1. Methanol, 2. Ethanol, 3. tert-Butylmethylether, 4. Cyclohexan, 5. n-Hexan, 6. Aceton, 7. Tetrahydrofuran, 8. Ethylacetat, 9. Dimethylformamid, 10. Acetonitril, 11. Toluol, 12. Chloroform

Nilblau ist ein Fluoreszenzfarbstoff. Die Fluoreszenz zeigt besonders in apolaren Lösungsmitteln eine hohe Quantenausbeute:[6]

Die Absorption und Emissionsmaxima von Nilblau sind stark abhängig vom pH-Wert und dem verwendeten Lösungsmittel.

Die Absorptions- und Emissionsmaxima von Nilblau in Abhängigkeit vom verwendeten Lösungsmittel[6]
Lösungsmittel Absorption λmax
(nm)
Emission λmax
(nm)
Toluol 493 574
Aceton 499 596
Dimethylformamid 504 598
Chloroform 624 647
1-Butanol 627 664
2-Propanol 627 665
Ethanol 628 667
Methanol 626 668
Wasser 635 674
1,0 N Salzsäure (pH=1,0) 457 556
0,1 N Natronlauge (pH=11,0) 522 668
Ammoniakwasser (pH=13,0) 524 668

Die Fluoreszenzdauer von Nilblau wurde in Ethanol mit 1,42 ns bestimmt. Dies ist kürzer als der entsprechende Wert von Nilrot mit 3,65 ns. Die Fluoreszenzdauer ist relativ invariant gegenüber Verdünnungen im Bereich von 10−3 – 10−8 mol·dm−3.[6]

Die Nilblau-Färbung

Nilblau wird zur histologischen Anfärbung von biologischen Präparaten verwendet. Dabei gelingt die Unterscheidung zwischen neutralen Lipiden (Triglyceride, Cholesterinester, Steroide) die rosa angefärbt werden und sauren (Fettsäuren, Chromolipide, Phospholipide) die blau angefärbt werden.[7]

Die Nilblau-Färbung nach Kleeberg benötigt folgende Chemikalien

Der Arbeitsablauf

Das Präparat wird in Formol fixiert. Daraus werden Gefrierschnitte oder Zupfpräparate hergestellt. Anschließend wird für 20 Minuten in die Nilblau-Lösung getaucht und danach mit Wasser abgespült. Zur besseren Differenzierung wird in 1%ige Essigsäure für 10–20 Minuten eingetaucht, bis die Farbtöne rein sind. Dies kann u.U. schon nach 1–2 Minuten der Fall sein. Dann wird in mehrfach gewechseltem Wasser gründlich gewässert (ein bis zwei Stunden). Danach kann das angefärbte Präparat auf einen Objektträger gezogen und der Wasserüberschuss abgesaugt werden. Der Einschluss des Präparates kann in Glycerin oder lauwarmer Glyceringelatine erfolgen.

Das Ergebnis

Ungesättigte Glyceride sind rosa, Kerne und Elastica dunkelblau, Fettsäuren und zahlreiche Fettsubstanzen und Fettgemische blau bis violett gefärbt.[8]

Beispiel: Nachweis von Poly-β-hydroxybutyrat-Granula (PHB)

Die PHB-Granula in den Zellen von Pseudomonas solanacearum können durch Anfärbung mit Nilblau A sichtbar gemacht werden. Die PHB-Granula der gefärbten Ausstriche zeigen unter einem Epifluoreszenzmikroskop bei 450 nm Anregungswellenlänge unter Ölimmersion, bei einer 1000 fachen Vergrößerung eine kräftige orangefarbene Fluoreszenz.[9]

Nilblau in der Onkologie

Derivate des Nilblau sind potentielle Photosensibilisatoren in der Photodynamischen Therapie (PDT) von malignen Tumoren. Diese Farbstoffe werden durch Farbstoffaggregation in den Tumorzellen, speziell in den Lipidmembranen und/oder sequestriert in den subzellularen Organellen, stark angereichert.[10]

Mit dem Nilblau-Derivat N-Ethyl-Nilblau (EtNBA) konnte in Tierversuchen zwischen normalem und prämalignem Gewebe mittels Fluoreszenzbildgebung beziehungsweise Fluoreszenzspektroskopie unterschieden werden. EtNBA zeigt dabei keine phototoxischen Effekte.[11]

Einzelnachweise

  1. 1,0 1,1  Thieme Chemistry (Hrsg.): RÖMPP Online - Version 3.1. Georg Thieme Verlag KG, Stuttgart 2008.
  2. 2,0 2,1 2,2 Datenblatt Nilblau bei Merck, abgerufen am 3. Juni 2008.
  3. Datenblatt Nile Blue A bei Sigma-Aldrich, abgerufen am 16. April 2011.
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. Universität Bochum, Ketogenese, Lipoproteine – biochemische Grundlagen, abgerufen am 27. Juni 2007.
  6. 6,0 6,1 6,2 Jiney Jose and Kevin Burgess: Benzophenoxazine-based fluorescent dyes for labeling biomolecules, in Tetrahedron, 2006, 62, S. 11021–11037; doi:10.1016/j.tet.2006.08.056.
  7. Roche Lexikon, abgerufen am 25. Juni 2007.
  8. Benno Romeis, Mikroskopische Technik, 15. Aufl., R. Oldenbourg Verlag, München 1948.
  9. 97/647/EG: Entscheidung der EU-Kommission vom 9. September 1997 über ein vorläufiges Versuchsprogramm für Diagnose, Nachweis und Identifizierung von Pseudomonas solanacearum (Smith) Smith in Kartoffeln, abgerufen am 27. Juni 2007.
  10. C.W. Lin, J.R. Shulok, S.D. Kirley, L. Cincotta, J.W. Foley: Lysosomal localization and mechanism of uptake of Nile blue photosensitizers in tumor cells, in: Cancer Research, 1991, 51, S. 2710–2719; PMID 2021950.
  11. H.J. van Staveren: Fluorescence imaging and spectroscopy of ethyl nile blue A in animal models of (pre)malignancies, in: Photochemistry and photobiology, 2001, 73, S. 32–38; PMID 11202363.

Literatur

  • F.J. Green: The Sigma-Aldrich Handbook of Stains, Dyes and Indicators, Aldrich Chemical Company, Milwaukee, 1990.
  • J. Rao, A. Dragulescu-Andrasi, H. Yao: Fluorescence imaging in vivo: recent advances, in: Current Opinion in Biotechnology, 2007, 18, S. 17–25; PMID 17234399.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

21.10.2021
Teilchenphysik
Auf der Jagd nach Hyperkernen
Mit dem WASA-Detektor wird bei GSI/FAIR gerade ein besonderes Instrument aufgebaut.
18.10.2021
Galaxien | Schwarze Löcher
Entwicklung von heißem Gas von einem aktiven Schwarzen Loch
Ein internationales Team hat zum ersten Mal die Entwicklung von heißem Gas beobachtet, das von einem aktiven Schwarzen Loch stammt.
15.10.2021
Elektrodynamik | Festkörperphysik
Ultraschneller Magnetismus
Magnetische Festkörper können mit einem Laserpuls entmagnetisiert werden.
16.10.2021
Planeten | Elektrodynamik | Thermodynamik
Neues von den ungewöhnlichen Magnetfeldern von Uranus und Neptun
Tausende Grad heißes Eis - Wie es bei millionenfachem Atmosphärendruck entsteht und warum dieses leitende superionische Eis bei der Erklärung der ungewöhnlichen Magnetfelder der Gasplaneten Uranus und Neptun hilft.
14.10.2021
Elektrodynamik | Quantenphysik
Exotische Magnetzustände in kleinster Dimension
Einem internationalen Forscherteam gelang es erstmals, Quanten-Spinketten aus Kohlenstoff zu bauen.
15.10.2021
Sterne
Magentische Kräfte der Sonne: schnellere geladene Teilchen beobachtet
Protuberanzen schweben als riesige Wolken über der Sonne, gehalten von einem Stützgerüst aus magnetischen Kraftlinien, deren Fußpunkte in tiefen Sonnenschichten verankert sind.
14.10.2021
Planeten | Sterne
Der Planet fällt nicht weit vom Stern
Ein Zusammenhang zwischen der Zusammensetzung von Planeten und ihrem jeweiligen Wirtsstern wurde in der Astronomie schon lange vermutet.
12.10.2021
Kometen und Asteroiden
Lerne die 42 kennen: Einige der größten Asteroiden fotografiert
Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile haben Astronom:innen 42 der größten Objekte im Asteroidengürtel zwischen Mars und Jupiter abgelichtet.
06.10.2021
Elektrodynamik | Festkörperphysik
Forschungsteam beobachtet eigenes Magnetfeld bei Doppellagen-Graphen
Normalerweise hängt der elektrische Widerstand eines Materials stark von dessen Abmessungen und elementarer Beschaffenheit ab.
05.10.2021
Festkörperphysik | Quantenphysik
Neue Art von Magnetismus in Kult-Material entdeckt
Ein internationales Wissenschaftsteam macht eine wegweisende Entdeckung in Strontiumruthenat.