Karlovitz-Zahl

Erweiterte Suche

Die Karlovitz-Zahl wird zur Beschreibung von turbulenten Verbrennungsprozessen verwendet und setzt sich aus dem Verhältnis der Zeitskala für die Ausbreitung der laminaren Flamme $ \tau_\text{L} $ zur kleinsten turbulenten Zeitskala $ \tau_\text{K} $ (Kolmogorov-Zeit) zusammen:

$ Ka\equiv \frac{\tau_\text{L}}{\tau_\text{K}} $

Die laminare Flammen-Zeitskala $ \tau_\text{L} $ wird dabei üblicherweise als diejenige Zeit definiert, die die laminare Flammenfront benötigt, um sich durch Flammenpropagation mit der laminaren Flammengeschwindigkeit $ s_\text{L} $ um eine Strecke fortzubewegen, die gleich groß wie die laminare Flammenfrontdicke (inklusive ihrer Vorwärmschicht) $ l_\text{L} $ ist. Sie lässt sich auch über das Verhältnis der Diffusionskonstante $ D $ zum Quadrat der laminaren Flammengeschwindigkeit beschreiben [1][2]:

$ \tau_\text{L} = \frac{l_\text{L}}{s_\text{L}} = \frac{D}{s_\text{L}^2} $

Falls $ Ka\ll 1 $, läuft die Wärme- und Stoffdiffusion innerhalb der Flammenfront viel schneller als alle Turbulenzzeitskalen ab. Somit werden die lokale Flammenstruktur und der Bereich der chemischen Reaktion nicht von Turbulenzen verändert, bzw. beeinflusst und es herrschen innerhalb der Flamme laminare Bedingungen. Die Flamme lässt sich in diesem Fall meist gut mit einem Flamelet-Ansatz beschreiben, bei dem angenommen wird, dass sich die Flammenfront in lokaler Näherung vollständig laminar verhält.

Falls $ Ka \ge 1 $, sind die kleinsten turbulenten Wirbel gleich groß oder kleiner als die Dicke der Vorwärmschicht in der Flammenfront. Dadurch kann es zu einem turbulenten Wärme- und Stofftransport innerhalb der Flammenfront kommen. Dieser führt sowohl zu einer Verbreiterung der Flammenfront als auch zu einer Erhöhung der turbulenten Flammengeschwindigkeit[3].

Die Namensgebung der dimensionslosen Kennzahl bezieht sich auf den ungarischen Physiker Béla Karlovitz.[4]

Zusammenhang mit anderen Größen

Nach obiger Definition der Karlovitz-Zahl lässt sich das Verhältnis auch über Längenskalen oder Geschwindigkeiten ausdrücken[1]:

$ Ka = \frac{l_\text{L}^2}{\lambda_\text{K}^2} = \frac{v_\text{K}^2}{s_\text{L}^2} $

Hierbei stehen $ \lambda_\text{K} $ für die Kolmogorov-Länge (also der kleinsten Längenskala, die von der Turbulenz beeinflusst wird) und $ v_\text{K} $ für die Kolmogorov-Geschwindigkeit (also der Umlaufgeschwindigkeit von Wirbeln mit dem Durchmesser der Kolmogorov-Länge).

Unter der Annahme, dass für die Schmidt-Zahl $ Sc \approx 1 $ gilt, dass also die kinematische Viskosität etwa gleich groß wie die stoffliche Diffusionskonstante ist, kann man die Karlovitz-Zahl, die Damköhler-Zahl $ Da $ und die Reynolds-Zahl $ Re $ näherungsweise in folgende Beziehung zueinander setzen [1]:

$ Re \approx Da^2Ka^2 $

Alternative Definition

Ersetzt man in obiger Gleichung die laminare Flammen-Zeitskala durch die Reaktions-Zeitskala $ \tau_\text{R} $, lässt sich eine Karlovitz-Zahl für den Einfluss der Turbulenz auf die Reaktionsschicht definieren:

$ Ka_\text{R}\equiv \frac{\tau_\text{R}}{\tau_\text{K}} $

Analog zur Definition der laminaren Flammen-Zeitskala beschreibt die Reaktions-Zeitskala diejenige Zeit, die die Flammenfront benötigt, um durch Flammenpropagation eine Strecke zurückzulegen, die gleich groß wie die Dicke der Reaktionsschicht $ l_\text{R} $ ist. Die Reaktionsschicht ist derjenige Abschnitt innerhalb der Flammenfront, in dem die chemischen Reaktionen ablaufen. In einer laminaren Flammenfront ist die Reaktionsschicht erheblich dünner als die durch Stoff- und Wärmediffusion geprägte Vorwärmschicht. Das Größenverhältnis wird oft mit einem Faktor $ \delta\equiv\frac{l_\text{R}}{l_\text{L}} $ beschrieben. Es gilt also

$ Ka_\text{R} = \frac{l_\text{R}^2}{\lambda_\text{K}^2} = \delta^2 Ka $ .

Typischerweise ist $ \delta $ eine Zahl der Größenordnung $ O(10) $.

Analog zur obigen Beschreibung lässt sich hier feststellen:

Falls $ Ka_\text{R}\ll 1 $, laufen die chemischen Reaktionen viel schneller als alle Turbulenzzeitskalen ab. Somit wird die interne Struktur der Reaktionsschicht nicht von Turbulenzen verändert, und es herrschen innerhalb der Reaktionsschicht laminare Bedingungen.

Falls $ Ka_\text{R} \ge 1 $, sind die kleinsten turbulenten Wirbel gleich groß oder kleiner als die Dicke der Reaktionsschicht in der Flammenfront. Dadurch kann es rein theoretisch zu einer turbulenten Verbreiterung der Reaktionsschicht kommen. In extremen Fällen würde dies zu einer homogenen Verteilung der chemischen Reaktionen über ein makroskopisches Volumen führen (perfekter Rührreaktor). Viel wahrscheinlicher ist es allerdings, dass bei einer derart intensiven turbulenten Störung der Reaktionsschicht lokale Verlöschungen auftreten und die Flammenfront aufbricht oder sogar gänzlich erlischt [1][3].

Siehe auch

Einzelnachweise

  1. 1,0 1,1 1,2 1,3  Norbert Peters: Turbulent Combustion. Cambridge University Press, 2000, S. 78-79.
  2.  Jürgen Warnatz, Ulrich Maas, Robert Dibble: Combustion, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 3rd Edition. Springer, 2001, S. 201-204.
  3. 3,0 3,1  Chung K. Law: Combustion Physics. Cambridge University Press, 2006, S. 496-500.
  4. Bernard Lewis: Address by Dr. Bernard Lewis, Remarks on Combustion Science In: Symposium (International) on Combustion Volume 7 (Issue 1), 1958, S. xxxi–xxxv.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
03.06.2021
Supernovae - Astrophysik - Teilchenphysik
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.