Damköhler-Zahl

Die Damköhler-Zahlen (Da) (entwickelt von Gerhard Damköhler, 1908-1944) sind dimensionslose Kennzahlen der chemischen Reaktionstechnik. Bekannt sind vier verschiedene Damköhler-Zahlen (DaI, DaII, DaIII, DaIV), die als Damköhler-Zahl n-ter Ordnung bekannt sind, sowie eine turbulente Damköhler-Zahl (Dat).

Damköhler-Zahl erster Ordnung

Die Damköhler-Zahl erster Ordnung DaI beschreibt das Verhältnis der Geschwindigkeitskonstanten der Reaktion zur Geschwindigkeitskonstanten des konvektiven Stofftransports. Sie ist definiert als

$ DaI = k \cdot \tau \cdot c_0^{n-1}= \frac{k \cdot L \cdot c_0^{n-1}}{w} $,

mit: k = Geschwindigkeitskonstante, $ \tau $ = Verweilzeit bzw. Reaktionszeit, $ c_0 $ = Anfangskonzentration, n = Reaktionsordnung, L = charakteristische Länge und w = Strömungsgeschwindigkeit. Für die Beschreibung diskontinuierlicher Reaktoren ersetzt man die Verweilzeit $ \tau $ durch die Reaktionszeit $ t_r $. Somit erhält man in deutlich übersichtlicherer Darstellung die dimensionslose Massenbilanz des idealen Rührkesselreaktors.

Damköhler-Zahl zweiter Ordnung

Die Damköhler-Zahl zweiter Ordnung DaII findet sich bei der Beschreibung von inneren Stofftransportvorgängen (Porendiffusion) an Oberflächen, zum Beispiel an Katalysatorkugeln. Sie ist als Verhältnis von Reaktionsgeschwindigkeit zur Diffusionsgeschwindigkeit

$ DaII = \frac{k \cdot L^2 \cdot c^{n-1}}{D}= \frac{k \cdot c^{n-1}}{\beta \cdot a} $

mit: $ \beta= D/\delta $ = Stoffübergangskoeffizient, a = spezifische Austauschfläche. DaII kann als Verhältnis der Reaktionsgeschwindigkeit zu Oberflächenbedingungen zu der Diffusionsgeschwindigkeit durch die äußere Oberfläche des Katalysatorpellets gesehen werden.

Damköhler-Zahl dritter Ordnung und vierter Ordnung

Die Damköhler-Zahl dritter Ordnung DaIII und die Damköhler-Zahl vierter Ordnung DaIV werden zur Abschätzung von Betriebsbedingungen bei polytroper Betriebsweise von Reaktoren verwendet.

Turbulente Damköhler-Zahl

Die turbulente Damköhler-Zahl Dat (in der Verbrennungsforschung meist nur als Da bezeichnet) beschreibt das Verhältnis zwischen der makroskopischen Zeitskala einer turbulenten Strömung $ \tau_0 $ und der Zeitskala einer chemischen Reaktion $ \tau_R $:

$ Da_t:=\frac{\tau_0}{\tau_\text{R}} \approx \frac{l_0\,v_\text{R}}{v'\,l_\text{R}} $

$ l $ steht hierbei für die jeweilige Längenskala, wobei als makroskopische Längenskala meist eine integrale Längenskala gewählt wird.[1] Diese dient als Maß für den Durchmesser der energiereichsten (und damit auch in der Regel der größten) Wirbel in der Strömung. Deren Umlaufgeschwindigkeit ist etwa gleich der Standardabweichung $ v' $ der Strömungsgeschwindigkeit. Als charakteristische Ausbreitungsgeschwindigkeit $ v_\text{R} $ für die chemischen Reaktionen dient in der Verbrennungsforschung meist die laminare Flammengeschwindigkeit $ s_\text{L} $, also die Geschwindigkeit, mit der die Flammenfront im laminaren Fall propagiert: $ v_\text{R} = s_\text{L} $ Analog dazu ist es in Bezug auf Verbrennungsprozesse üblich, die Dicke der laminaren Flammenfront $ l_\text{L} $ als Reaktionslängenskala einzusetzen: $ l_\text{R} = l_\text{L} $ [2]

Anhand der turbulenten Damköhler-Zahl lassen sich Aussagen über die räumliche Struktur und das zeitliche Verhalten des Reaktionsgebiets in einer turbulenten reagierenden Strömung treffen. [3]

Siehe auch

Einzelnachweise

  1.  Stephen B. Pope: Turbulent Flows. Cambridge University Press, 2010, S. 197.
  2.  Jürgen Warnatz, Ulrich Maas, Robert W. Dibble: Verbrennung: Physikalisch-Chemische Grundlagen, Modellierung und Simulation, Experimente, Schadstoffentstehung (3. Auflage). Springer, 2001, S. 221-224.
  3.  Norbert Peters: Turbulent Combustion. Cambridge University Press, 2000, S. 78.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.