Hydrobromide

Erweiterte Suche

Hydrobromid ist ein Sammelbegriff für die organisch-chemische Stoffklasse der Salze, die Bromwasserstoffsäure (HBr) mit basischen organischen Verbindungen bildet. Oft sind Hydrobromide Salze von primären, sekundären oder tertiären Aminen, die sich in einer Neutralisationsreaktion mit Bromwasserstoffsäure (HBr) bilden:

R3N + HBr → R3NH+ Br

Die Reaktion verläuft analog der Reaktion von Ammoniak mit HBr, bei der sich Ammoniumbromid (NH4Br) bildet. Hydrobromide enthalten wie alle Bromide das Bromid-Anion (Br) und sind daher Salze. Hydrobromide sind im Vergleich zu ihren Stammverbindungen (meist Amine) meist besser wasserlöslich und lassen sich leichter durch Umkristallisation reinigen. Die Hydrobromide von Aminen sind deutlich stabiler und resistenter gegenüber Alterung - erkennbar an Verfärbung - als die freien basischen Amine.

Bei komplizierten Molekülen mit mehreren basisch reagierenden funktionellen Gruppen (siehe Alkaloide, Lysin), bei denen sich die protonierte Gruppe nicht genau festlegen lässt, werden Hydrobromide oft graphisch wie folgt dargestellt:

R3N + HBr → R3N·HBr

Bei der Reaktion von organischen Diaminen mit überschüssiger Bromwasserstoffsäure entstehen Dihydrobromide, die zwei Äquivalente Bromwasserstoffsäure (HBr) salzartig gebunden enthalten.

Daneben werden Hydrobromide von basischen Aminosäuren, Aminosäureestern und Alkaloiden gebildet. Eine Reihe von Arzneistoffen (Beispiele: Dextromethorphan, Fenoterol, Galantamin, Salsolinol) ist als Hydrobromid im Handel. [Wick Husten-Sirup® (D)] und Homatropin [Homatropin POS® 1 % (D)] sind weitere Beispiele.[1] Die Arzneistoffe Scopolamin[2] und Eletriptan[3] werden ebenfalls als Hydrobromide eingesetzt.[4]

Siehe auch

Einzelnachweise

  1. Axel Kleemann, Jürgen Engel, Bernd Kutscher und Dietmar Reichert: Pharmaceutical Substances, 4. Auflage (2000), Thieme-Verlag Stuttgart, ISBN 978-1-58890-031-9.
  2. Europäisches Arzneibuch 1997, S. 1611-1612.
  3. The Merck Index. An Encyclopaedia of Chemicals, Drugs and Biologicals. 14. Auflage, 2006, S. 602, ISBN 978-0-911910-00-1.
  4. P. Heinrich Stahl (Herausgeber), Camille G. Wermuth (Herausgeber): Pharmaceutical Salts: Properties, Selection, and Use, 2. Auflage, Wiley, 2011, ISBN 978-3-90639-051-2.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?