Harteloxal

Harteloxal, als Anwendung auch Harteloxieren, Hartanodisieren oder Hartcoatieren genannt, ist eine elektrolytische Oxidation von Aluminiumwerkstoffen, um Schutzschichten auf der Oberfläche zu erzeugen. Diese dienen als Verschleiß- und/oder Korrosionsschutz, weisen gute tribologische Eigenschaften auf und haben in Abhängigkeit vom Gegenlaufpartner sehr gute Gleiteigenschaften, die durch PTFE-Imprägnierungen noch verbessert werden können.

Verfahren

Das Aluminiumbauteil wird in einen Elektrolyten getaucht und als Anode geschaltet. Die Oberfläche wird dabei oxidiert, auf dem metallischen Aluminium bildet sich eine Schicht aus Aluminiumoxid. Dabei findet ein Volumenzuwachs an der Bauteiloberfläche, also eine Maßerhöhung, statt, in der Regel von ca. 50 % der Gesamtschichtdicke bei Standardverfahren. Üblicherweise werden Schichtdicken von ungefähr 25 bis 50 µm erzeugt.

Im Gegensatz zum Eloxieren, das bei Raumtemperatur bei relativ geringer Stromstärke durchgeführt wird, arbeitet man beim Harteloxieren bzw. Hartanodisieren mit sehr hohen Stromstärken. Daher muss der Elektrolyt gekühlt werden, damit die Bauteile nicht überhitzen oder sogar verbrennen. Üblicherweise dient, wie beim Eloxieren, Schwefelsäure als Elektrolyt, aber auch andere Säuren oder Mischungen sind möglich und nehmen Einfluss auf die Schichteigenschaften.

Hartanodisierbar sind alle Aluminiumlegierungen, aber je reiner die Legierung ist, umso mehr Oxide können gebildet werden. Auf sehr reinen Legierungen können daher Schichtdicken von bis zu 200 µm erreicht werden.

Anwendung

Hartanodische Schichten sind wesentlich dichter und sehr viel härter als normale anodische Schichten, die Aluminiumoxide in der Schicht, sowie die Legierungsbestandteile, die während des Beschichtungs- bzw. Umwandlungsprozesses herausgelöst (z.B.: Cu), oder als nicht lösbare Bestandteile (z.B.: Si) eingebaut werden, haben einen wesentlichen Einfluss auf die Härte der Schicht. Die erzielbaren Schichthärten sind von der verwendeten Aluminiumlegierung abhängig und bewegen sich zwischen 350 und 600 mHV 0,025 (Mikrohärte nach Vickers). Die Schichthärte wird ausschließlich im Querschliff gemessen, durch die Poren, die sich in der Schicht befinden, erhält man eine Misch- oder Scheinhärte. Die Oxide des Aluminiums haben tatsächlich eine wesentlich höhere Härte, woraus man dann ableiten kann, dass unter bestimmten Bedingungen wesentlich bessere Verschleißeigenschaften erreicht werden können als bei metallischen Schichten wie z.B. gegenüber einer Chromschicht, die eine Vickershärte von ca. 1000 - 1100HV aufweist. Harteloxalschichten werden zu technischen Zwecken (und immer mehr in Kombination mit einer dunklen Optik) eingesetzt, beispielsweise für Bolzen, Lager, Gehäuse, Führungen, Steuerventile, Steuerkolben, Zahnräder, Schnecken, und Aluminium-Profile. Da sie als keramische Schicht schlecht leitet, dient sie auch zur elektrischen Isolation. Der Vorteil dieser Schichten liegt darin, dass man leichtere Werkstoffe einsetzen kann (wenn nicht eine bestimmte Grundfestigkeit und Zähigkeit des Werkstoffes gefordert wird) und trotzdem extrem gute Verschleiß- und Korrosionsschutzwerte erreichen kann.

Nachbehandlung

Harteloxalschichten können aufgrund ihrer porigen Struktur nachbehandelt werden, um die Eigenschaften zu verbessern oder zu verändern. Die Schichten "wachsen" senkrecht aus dem Grundmaterial heraus und bilden am Grund eine Sperrschicht. Über dieser Sperrschicht befinden sich Kanäle, über die der Strom zum Grundmaterial fließt und die Schicht bis zur gewünschten Stärke aufwachsen lässt. Diese Poren kann man durch ein Nachverdichten in ca. 96 °C heißem VE-Wasser verschließen. Durch die verschlossenen Poren gelangen Feuchtigkeit und Sauerstoff nur sehr schwierig an das Grundmaterial, man erreicht so einen wesentlich verbesserten Korrosionsschutz. Dieser Schutz geht allerdings zu Lasten der guten Verschleißschutzeigenschaft, da man bei der Nachverdichtung (Sealing) Böhmit aus der Schicht herauslöst und diese im oberen Bereich geschwächt wird. Die Poren kann man auch mit einer wässrigen PTFE-Lösung "imprägnieren". PTFE verleiht dem Harteloxal wesentlich verbesserte Gleiteigenschaften. Allerdings werden nur PTFE-Schichtdicken von maximal 3 µm erreicht. Abrasiver Verschleißbeanspruchung kann die PTFE-Schicht nicht lange widerstehen.

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.