Natriumsulfat

Erweiterte Suche

(Weitergeleitet von Glaubersalz)
Strukturformel
2.svg Na+.svg Strukturformel von Natriumsulfat
Allgemeines
Name Natriumsulfat
Andere Namen
  • Dinatriumsulfat
  • E 514
  • Glaubersalz (Decahydrat)
Summenformel Na2SO4
CAS-Nummer 7757-82-6
ATC-Code
Kurzbeschreibung

farb- und geruchloser Feststoff[1]

Eigenschaften
Molare Masse 142,04 g·mol−1
Aggregatzustand

fest

Dichte

2,70 g·cm−3 (20 °C)[1]

Schmelzpunkt

888 °C[1]

Siedepunkt

Zersetzung ab 890 °C[1]

Löslichkeit

gut in Wasser: 170 g·l−1, bei 20 °C[1]

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme

H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze [1]
LD50

5989 mg·kg−1 (Maus, peroral)[2]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Natriumsulfat (Na2SO4, veraltete Bezeichnung Schwefelsaures Natron) ist ein Natriumsalz der Schwefelsäure und setzt sich aus zwei Natriumkationen (Na+) und dem Sulfatanion (SO42-) zusammen. Das Dekahydrat (Na2SO4·10H2O) wird nach dem Chemiker Johann Rudolph Glauber auch Glaubersalz genannt. Auch Karlsbader Salz, das durch Eindampfen von Karlsbader Mineralwasser gewonnen wird, besteht hauptsächlich aus Natriumsulfat-Dekahydrat und wird wie Glaubersalz als Abführmittel eingesetzt.

Geschichte

Natriumsulfat wurde 1625 von dem Chemiker und Apotheker Johann Rudolph Glauber als Bestandteil von Mineralwasser entdeckt und beschrieben. Dabei beschrieb Glauber den salzigen Geschmack des Stoffes, dass es auf der Zunge schmilzt und im Gegensatz zu Salpeter nicht brennt, wenn man es in Feuer bringt. Zudem erkannte er, dass das erhaltene kristallwasserhaltige Natriumsulfat beim Erhitzen leichter wird. Auch die wichtigste medizinische Wirkung als Abführmittel erkannte Glauber schon zu dieser Zeit.[3]

Ab 1658 experimentierte Glauber mit Kochsalz und Schwefelsäure und erhielt dabei neben Salzsäure (als Spiritus salis, Geist des Salzes bezeichnet) auch Natriumsulfat, das er nun genauer untersuchen konnte. Dabei entdeckte er insgesamt 26 verschiedene mögliche medizinische Anwendungen, aber auch Anwendungen in der Alchemie und Kunst.[3]

Nach Johann Glauber wurde das Sal mirabilis später in der Regel Glaubersalz genannt.

Vorkommen

Natriumsulfat kommt in der Natur als orthorhombisch kristallisierender Thenardit (α-Na2[SO4]) bzw. als Hochtemperaturmodifikation (> 271° C) als trigonal kristallisierender Metathenardit sowie als wasserhaltiger Mirabilit (Na2[SO4] • 10H2O) vor.

Gewinnung und Darstellung

Natürlich vorkommendes Natriumsulfat wird auf Grund der Seltenheit nur selten bergmännisch abgebaut, fällt jedoch häufig als Nebenprodukt in der chemischen Industrie bei Reaktionen an, bei denen Schwefelsäure mit Natronlauge neutralisiert wird. Eine weitere Möglichkeit zur technischen Darstellung besteht in der Umsetzung von Steinsalz (NaCl) mit Schwefelsäure zwecks Gewinnung von Salzsäure mit Natriumsulfat als Nebenprodukt:

$ \mathrm{2 \ NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2 \ HCl} $
Natriumchlorid und Schwefelsäure reagieren zu Natriumsulfat und Chlorwasserstoff.

Natriumsulfat lässt sich im Labor durch folgende Reaktionen darstellen:

$ \mathrm{\ Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2} $
Natriumcarbonat und Schwefelsäure reagieren zu Natriumsulfat, Wasser und Kohlenstoffdioxid.
$ \mathrm{2 \ NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2 \ H_2O} $
Bei der Neutralisation von Natronlauge mit Schwefelsäure entstehen Natriumsulfat und Wasser.

Eigenschaften

Natriumsulfat
Das wasserfreie Natriumsulfat schmilzt bei 888 °C, ist hygroskopisch und gut in Wasser löslich, wobei es sich erwärmt (Lösungswärme). Dagegen löst sich das Dekahydrat unter starker Abkühlung, bedingt durch den sogenannten Entropie-Effekt. Das Kristallwasser verlässt ab etwa 32 °C den Kristallverband, wodurch es scheint, als schmelze das Natriumsulfat, tatsächlich löst es sich aber im frei gewordenen Wasser. Aus dieser an wasserfreiem Natriumsulfat übersättigten Lösung scheidet sich das wasserfreie Salz ab. Bei dieser Temperatur hat Natriumsulfat ein ausgeprägtes Löslichkeitsmaximum.
Löslichkeit einiger Salze in Wasser bei verschiedenen Temperaturen


Verwendung

Natriumsulfat wird in Waschmitteln als Füllstoff, in der Medizin als Abführmittel, bei der Zellstoffgewinnung (Sulfatverfahren) sowie in der Glas-, Textil- und Farbindustrie eingesetzt. Geglühtes, kristallwasserfreies Natriumsulfat wird im Labor zur Trocknung von organischen Lösungsmitteln verwendet. Das Natriumsulfat-Dekahydrat (Glaubersalz) wird als Abführmittel und als Latentwärmespeichermaterial verwendet.

In der Lebensmitteltechnologie dient es als Festigungsmittel, Säureregulator und Trägersubstanz. Natriumsulfat und Natriumhydrogensulfat sind in der EU als Lebensmittelzusatzstoff der Nummer E 514 ohne Höchstmengenbeschränkung (quantum satis) für Lebensmittel allgemein zugelassen.[4]


Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 Eintrag zu Natriumsulfat in der GESTIS-Stoffdatenbank des IFA, abgerufen am 25. April 2008 (JavaScript erforderlich)
  2. Natriumsulfat bei ChemIDplus.
  3. 3,0 3,1 James C. Hill: Johann Glauber's discovery of sodium sulfate - Sal Mirabile Glauberi. In: Journal of Chemical Education. 56, 1979, S. 593, doi:10.1021/ed056p593.
  4. Natriumsulfate - Datenbank Zusatzstoffe
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

27.07.2021
Monde - Thermodynamik
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
27.07.2021
Quantenphysik - Thermodynamik
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
27.07.2021
Klassische Mechanik - Physikdidaktik
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.