Gattermann-Synthese

Erweiterte Suche

(Weitergeleitet von Gattermann-Adams-Synthese)

Bei der Gattermann-Synthese handelt es sich um eine Namensreaktion in der Organischen Chemie, die verwendet wird, um aromatische Aldehyde aus Phenolen oder anderen Aromaten zu synthetisieren. Benannt wurde sie nach dem Goslarer Chemiker Ludwig Gattermann. Die Gattermann-Synthese kann auch eingesetzt werden, um einzelne Kohlenwasserstoffverbindungen, Heterocyclen wie Furan-, Pyrrol- und Indolderivate sowie Thiophen zu synthetisieren. Die Gattermann-Synthese ist eine Variante der Friedel-Crafts-Acylierung.

Übersichtsreaktion

Bei der Gattermann-Reaktion reagieren Aromaten mit Blausäure und Chlorwasserstoff in Gegenwart des Katalysators Zinkchlorid (ZnCl2) oder Aluminiumchlorid (AlCl3) zu formylierten Aromaten.

Übersicht der Gattermann-Synthese

Mechanismus

Bei der Gattermann-Reaktion handelt es sich um eine Elektrophile aromatische Substitution. [1] Die Edukte Blausäure, Chlorwasserstoff und der Katalysator Aluminiumchlorid reagieren zu einem Elektrophil, welches den Aromaten unter Bildung eines Hexadienyl-Kation angreift. Dieses wird durch Deprotonierung rearomatisiert. Durch Hydrolyse entsteht der formylierte Aromat. Verwendet man mehrwertige Phenole oder Phenolether, so ist kein Katalysator erforderlich.

Mechanismus der Gattermann-Synthese

Varianten

Gattermann-Adams-Reaktion

Bei der Gattermann-Adams-Reaktion handelt es sich um eine Namensreaktion in der Organischen Chemie. Heute wird meist nicht mehr, wie in der Gattermann-Reaktion, mit freier Blausäure gearbeitet. Die Gattermann-Adams-Reaktion beschreibt deren Entstehung während der Synthese. Dabei wird aus Zink(II)-cyanid unter Einwirkung von Chlorwasserstoff während der Reaktion die Blausäure freigesetzt. Die Aktivität des dabei entstehenden Zink(II)-chlorids reicht aus, um als Katalysator bei der Umsetzung mit reaktionsfähigeren Phenolen zu wirken. Bei der Reaktion mit trägeren Phenolen muss zusätzlich Aluminiumchlorid als Katalysator zugesetzt werden.

Gattermann-Koch-Reaktion

Die Gattermann-Koch-Synthese ist eine Namensreaktion in der Organischen Chemie, welche nach den deutschen Chemikern Ludwig Gattermann und Julius Arnold Koch benannt wurde.[2] Sie ist der Gattermann-Synthese ähnlich. Hierbei reagieren Aromaten mit Kohlenmonoxid und Chlorwasserstoff und den Katalysatoren Aluminiumchlorid oder Kupfer(I)-chlorid zu formylierten Aromaten.

Übersicht der Gattermann-Koch-Synthese

Mechanismus

Bei der Gattermann-Koch-Reaktion handelt es sich um eine Elektrophile aromatische Substitution. [3] Die Edukte Kohlenmonoxid, Chlorwasserstoff und der Katalysator Aluminiumchlorid reagieren zu einem Elektrophil, welches der Aromat unter Bildung eines Hexadienyl-Kations angreift. Dieses wird durch Deprotonierung rearomatisiert. Durch Abspaltung von Aluminiumchlorid entsteht der formylierte Aromat. Das Gemisch reagiert unter hohem Druck wie das nur bei der Temperatur von flüssiger Luft beständige Formylchlorid, deswegen entsteht auch hier ein formylierter Aromat. Die Gattermann-Koch-Synthese muss unter Ausschluss von Wasser stattfinden.

Mechanismus der Gattermann-Koch-Synthese

Einzelnachweise

  1.  T. Laue, A. PLagens: Namens- und Schlagwortreaktionen der Organischen Chemie. Teubner Verlag, 2006, ISBN 3-8351-0091-2, S. 149-152.
  2. Gattermann, L.; Koch, J. A.: Eine Synthese aromatischer Aldehyde. In: Ber.. 30, 1897, S. 1622. doi:10.1002/cber.18970300288.
  3.  T. Laue, A. PLagens: Namens- und Schlagwortreaktionen der Organischen Chemie. Teubner Verlag, 2006, ISBN 3-8351-0091-2, S. 149-152.

Literatur

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

27.07.2021
Monde - Thermodynamik
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
27.07.2021
Quantenphysik - Thermodynamik
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
27.07.2021
Klassische Mechanik - Physikdidaktik
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.