Friedel-Crafts-Acylierung

Erweiterte Suche

Die Friedel-Crafts-Acylierung ist eine Namensreaktion der Organischen Chemie und benannt nach Charles Friedel und James Mason Crafts. Bei der Reaktion werden Aromaten unter Lewissäure-Katalyse meist mit Carbonsäurehalogeniden umgesetzt, um einen Acylrest (Acylierung) in ein aromatisches System einzuführen. Als Wertstoff der Reaktion wird ein Keton erhalten. Für die Friedel-Crafts-Acylierung wird meist eine starke Lewissäure gewählt (z. B. FeCl3, BF3 oder AlCl3), die in mindestens stöchiometrischen Mengen eingesetzt wird.[1]

Übersicht der Friedel-Crafts-Acylierung

Die Acylierung kann auch intramolekular erfolgen, beispielsweise bei der Synthese von 1-Indanon, einem bicyclischen Keton:[1]

Intramolekulare Friedel-Crafts-Acylierung

Es gibt auch Ausführungsformen der Friedel-Crafts-Acylierung bei denen geringere Katalysatormengen eingesetzt werden oder vollständig auf den Katalysator verzichtet werden kann.[2]

Reaktionsmechanismus

Der Mechanismus wird im folgenden Abschnitt an der Reaktion eines Carbonsäurechlorids mit Benzol erläutert. Die Friedel-Crafts-Acylierung wird dadurch eingeleitet, dass die Lewissäure an den Carbonylsauerstoff des Carbonsäurechlorids 1 koordiniert und dadurch den Carbonylkohlenstoff noch weiter positiviert (2). Allerdings kann die Lewissäure auch an das Chlor koordinieren und den gleichen Effekt auslösen (3). Dabei kann dann ein Acylium-Kation 4 entstehen, das das Benzol in einer elektrophilen, aromatischen Substitution angreift und den aromatischen Charakter aufhebt. Inwiefern der Komplex aus Acylhalogenid-Lewis-Säure 2 oder ein Acylium-Kation 4 das aktive Agens ist, hängt sowohl vom Substrat, dem Acylderivat als auch dem Lösungsmittel ab. Nach der Abgabe eines Protons rearomatisiert das vorläufige Endprodukt 7. Die Lewis-Säure ist weiterhin am Carbonylsauerstoff koordiniert. Die Hydrolyse ist also im letzten Schritt als Reinigungsschritt zu sehen und setzt den acylierten Aromaten 8 frei. Als Lösungsmittel für die Reaktion dienen in der Regel die Aromaten im Überschuss selber. Es finden aber auch Nitrobenzol, Nitromethan oder bei tiefen Temperaturen Dichlormethan Verwendung.[3][4]


Mechanismus der Friedel-Crafts-Acylierung

Benzolderivate

Durch die häufig hohen, sterischen Anforderungen des Acylhalogenid-Lewissäuren-Komplexes weist die Friedel-Crafts-Acylierung eine hohe Regioselektivität auf, was bei Umsetzung einfach substituierter Benzolderivate zum para-Produkt führt. Desaktivierend substitutierte Aromaten werden nach Friedel-Crafts nicht acyliert. Dementsprechend sind Mehrfach-Acylierungen bei dieser Reaktion nicht zu erwarten. Diese Eigenschaften machen die Friedel-Crafts-Acylierung synthetisch wertvoll gegenüber der Friedel-Crafts-Alkylierung.

Varianten

Die Bedeutung der Reaktion wird durch die Tatsache, dass auch Carbonsäureanhydride und Carbonsäuren in Polyphosphorsäure geeignete Acylierungsmittel sind, noch größer. Durch die Aufeinanderfolge von Friedel-Crafts-Acylierung und Wolff-Kishner-Reduktion oder Clemmensen-Reduktion sind auch alkylsubstituierte Aromaten synthetisch zugänglich.

Neuere Entwicklungen

Es gibt neuere Varianten[5], welche auf den Edukteinsatz von Lewissäuren oder Protonensäuren verzichten und die Reaktion in Kontakt mit unterschiedlichen Feststoffen ablaufen lassen. Als besonderes vorteilhaft zeigte sich die Verwendung von Zinkoxid.[6] Mit sowohl aktivierten als auch (schwach) deaktivierten Arylen wie Chlorbenzol konnten bei milden Reaktionsbedingungen (Raumtemperatur) und kurzen Reaktionszeiten (einige Minuten) in vielen Fällen hohe Umsätze und Ausbeuten erzielt werden. Die Umsetzung wurde lösemittelfrei durchgeführt. Das Zinkoxid, welches unterstöchiometrisch einsetzbar ist, konnte wiedergewonnen und mehrfach eingesetzt werden. Es bedurfte keiner wässrigen Aufarbeitung, ein simpler nicht-protischer Auszug war ausreichend, um in den meisten Fällen ohne weitere Aufreinigung eine hohe Produktreinheit zu erzielen. Der Mechanismus wurde nicht untersucht. Es ist denkbar, dass intermediär Zinkchlorid als Lewissäure entsteht, allerdings läuft die Reaktion interessanterweise auch auf Graphit anstelle des Metalloxids ab.[7] Mit Säureanhydriden anstelle der Chloride versagte die Reaktion. Eine Reihe anderer Metalloxide, darunter Aluminiumoxid, zeigte sich als deutlich unterlegen oder unbrauchbar.

Einzelnachweise

  1. 1,0 1,1 Siegfried Hauptmann: Organische Chemie, 2. durchgesehene Auflage, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1985, S. 354, ISBN 3-342-00280-8.
  2. D. E. Pearson, C. A Buehler: Friedel-Crafts acylations with little or no catalyst, in: Synthesis 1972, 10, 533–542; doi:10.1055/s-1972-21912.
  3. T. Laue und A. Plagens: Namens- und Schlagwort-Reaktionen der Organischen Chemie, 5. Auflage, Teubner Studienbücher Chemie, 2006, S. 129, ISBN 3-519-33526-3.
  4. Z. Wang:Comprehensive Organic Name Reactions and Reagents Volume 1, Wiley Verlag, 2009, S. 1126, ISBN 978-0-471-70450-8, (3-Volume Set).
  5. OC Portal.
  6. M. Hosseini Sarvari, H. Sharghi : Reactions on a Solid Surface. A Simple, Economical and Efficient Friedel-Crafts Acylation Reaction over Zinc Oxide as a New Catalys, J. Org. Chem. 2004, 69, 6953-6956.
  7. M. Kodomari, Y. Suzuki, K. Yoshida: Graphite as an effective catalyst for Friedel–Crafts acylation, Chem. Commun. 1997, 1567.

Siehe auch

Weblinks

Die cosmos-indirekt.de:News der letzten Tage

16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.