Fluoreszenzlebensdauer

Erweiterte Suche

Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn Du Dich mit dem Thema auskennst, bist Du herzlich eingeladen, Dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

Die Fluoreszenzlebensdauer gibt die mittlere Zeit an, die ein Molekül in einem angeregten Zustand bleibt, bevor es ein Photon emittiert und damit in den Grundzustand zurückkehrt. Der Zerfall der Fluoreszenz folgt dabei einem exponentiellen Gesetz:

$ I(t)=I_0 \exp \left(-\frac{t}{\tau}\right) $.

Hierbei ist $ I_0 $ die Fluoreszenzintensität unmittelbar nach einem Anregungsblitz (z. B. ein Laserpuls), $ t $ die Zeit und $ \tau $ die Fluoreszenzlebensdauer. Für diese gilt

$ \frac{1}{\tau}=k_r+k_{nr} $.

Das bedeutet, es existieren strahlende Prozesse, die mit der Rate $ k_r $ zerfallen und nicht-strahlende Prozesse, die mit der Rate $ k_{nr} $ zerfallen. Bei stark fluoreszierenden Stoffen, wie Fluoreszenzfarbstoffen, ist $ k_{nr} $ verschwindend gering. Bei nicht-fluoreszierenden Stoffen (also den meisten Dingen unserer Umgebung) ist hingegen $ k_r $ viel kleiner als $ k_{nr} $.

Typische Fluoreszenzlebensdauern liegen im Bereich von wenigen Nanosekunden. Dabei ist zu beachten, dass es sich hier um einen spinerlaubten Vorgang (Fluoreszenz) handelt. Beim spinverbotenen Vorgang (Phosphoreszenz) ergeben sich um Größenordnungen längere Lebenszeiten im Bereich von Millisekunden bis Stunden.

Die Fluoreszenzlebensdauer ist in der Spektroskopie und Mikroskopie (Fluoreszenzlebensdauer-Mikroskopie) ein wichtiger Messparameter, der zur Unterscheidung verschiedener (auch gleichfarbiger) Fluorophore dient. Darüber liefert die Fluoreszenzlebensdauer wichtige Informationen über die chemische Umgebung eines Fluophors und kann Energietransfermechanismen, wie den Förster-Resonanzenergietransfer, aufdecken.

Zum Beispiel wird in einer Zelle die Fluoreszenzlebensdauer durch die nähere Umgebung des Fluorophors beeinflusst, d.h. die Fluorophore können als Messsonden der Umgebung dienen.

Experimentelle Bestimmung

Histogramme der zeitkorrelierten Einzelphotonenzählung in einem Fluoreszenz-(Lebenszeit-)Spektrometer. Dargestellt ist der zeitliche Intensitätsverlauf der Anregungs-Lichtblitze sowie das darüber numerisch entfaltete Histogramm der Photonenzählung des Lumineszenzlichtes einer Lösung des Farbstoffes Rhodamin 6G. $ \tau\approx $4.3 ns.

Die Ermittlung von Fluoreszenzlebensdauern erfordert die zeitaufgelöste Aufzeichnung der Intensität emittierter Strahlung. Ein gängiges Verfahren dafür ist die zeitkorrelierte Einzelphotonenzählung (TCSPC). Dabei erfolgt die Anregung der Probe periodisch mit monochromatischen Lichtblitzen geringer Intensität (LASER, Nanosekunden-Blitzlampe). Die Detektion der Fluoreszenz erfolgt bei einer größeren, als der zur Anregung verwendeten, Wellenlänge (Monochromator auf Emissionsseite der Versuchsanordnung) mit einem Sekundärelektronenvervielfacher (Photomultiplier, PMT), der in der Lage ist, einzelne Photonen zu registrieren.

Wird das Licht der Anregungslichtquelle so stark abgeschwächt, dass nur noch nach ein bis fünf Prozent der Lichtblitze ein Signal registriert wird, so kann davon ausgegangen werden, dass es sich um die Registrierung einzelner Photonen handelt. Mit einer elektronischen Schaltung werden Zeitmessungen durchgeführt, die von einem zusätzlichen Detektor (Photodiode) direkt an der Lichtquelle gestartet und vom Signal des Fluoreszenzdetektors gestoppt werden. Durch die Diskretisierung des Zeitsignals erhält man nach Durchlaufen vieler Anregungs-/Messzyklen ein (von der Auflösung der eingesetzten Analog-Digital-Wandler abhängiges) Histogramm, dessen Einhüllende dem Signal einer analogen Aufzeichnung des zeitaufgelösten Intensitätsverlaufs der Fluoreszenz nach einem einzelnen Anregungspuls hoher Leistung entspricht.

Aus dem dabei erhaltenen Histogramm (siehe Abbildung) kann auf graphischem Wege oder durch Regressionsanalyse die Fluoreszenzlebensdauer $ \tau $ ermittelt werden.

Eine andere Methode ist die Messung im Frequenzbereich (Phasenfluorometrie). Hierbei wird die Probe mit einem intensitätsmodulierten Licht E(t) der Frequenz $ \omega $ bestrahlt. Detektiert wird das emittierte Fluoreszenzlicht F(t), das mit der gleichen Frequenz moduliert ist. Allerdings wird die Modulationsamplitude verringert und es tritt eine Phasenverschiebung auf. Das System wird wie folgt beschrieben (lineare Antwort):

$ F \left( t \right) = \chi \left( \omega \right) E \left( t \right) = \left| \chi \left( \omega \right) \right|\ E_0\ \mathrm{e}^{\left( -i \left( \omega t - \phi \left( \omega \right) \right) \right)} $

$ \chi \left(\omega\right) $ ist die Suszeptibilität, die sich aus einem Dispersionsterm und einem Absorptionsterm zusammensetzt. Wird nun als Zeitantwort auf eine Delta-Störung eine Debye-Relaxation angenommen:

$ \overline{\chi}\left(t\right) = \mathrm{e}^{-\frac{t}{\tau_M}} $,

dann folgt für den Frequenzbereich (Fouriertransformation):

$ \chi\left(\omega\right)=\frac{1+i \omega \; \tau_M}{1+{\omega}^2 \; {\tau_M}^2} $

Für Phase und Demodulation M ergibt sich dann:

$ \phi\left(\omega\right)=\arctan{\left(\omega\;\tau_P\right)} $
$ M=\left|\chi\left(\omega\right)\right|=\sqrt{\frac{1}{1+{\omega}^2\;{\tau_M}^2}} $

Dabei sind $ \tau_P $ und $ \tau_M $ die Abklingzeiten für die Phase bzw. die Demodulation. Im Falle nur eines Fluorophors sind diese gleich und frequenzunabhängig.

Literatur

  • Joseph R. Lakowicz: Principles of Fluorescence Spectroscopy. Plenum Publishing Corporation, 2. Ausgabe, 1999
  • K. Suhling et al. - Imaging the Environment of Green Fluorescent Protein, Biophysical Journal (2002) 83, 3589-3595
  • Primer on Time-Correlated Single Photon Counting, PicoQuant GmbH, Berlin.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?