Elektronik

Erweiterte Suche

Dieser Artikel behandelt das Thema Elektronik, die Fachzeitschrift Elektronik finden Sie unter Elektronik (Zeitschrift).

Unter Elektronik (Lehre von der Steuerung von Elektronen) werden alle Vorgänge in Steuer-, Regel- und Verstärkerschaltungen sowie die Vorgänge in den hierfür verwendeten Bauelementen verstanden. Als Stellgröße einer veränderlichen Spannung oder eines veränderlichen Stromes dient hier wiederum ein elektrischer Strom ohne den Umweg über den Elektromagnetismus oder einen mechanisch betätigten Geber oder Schalter. Die Optoelektronik ist ein Teilgebiet der Elektronik und beschäftigt sich mit der Steuerung durch Licht.

Wortbildung

Der Begriff Elektronik leitet sich von dem griechischen Wort elektron (ήλεκτρον) ab, das Bernstein bedeutet. Elektronik ist ein Kofferwort, das aus den Begriffen Elektron (dem Elementarteilchen) und Technik zusammengefügt wurde. Die Elektronik ist sozusagen die Elektronen-Technik.

Geschichte

1873 entdeckte Willoughby Smith, dass Selen in der Lage ist, bei Licht zu leiten (Photoeffekt). Auf diese Erkenntnis hin entdeckte Karl Ferdinand Braun 1874 den Gleichrichtereffekt. Stoney und Helmholtz prägten den Begriff des Elektrons als Träger des elektrischen Stromes. 1883 erhielt Thomas Alva Edison ein Patent auf einen Gleichspannungsregler, der auf der Glühemission (dem Edison-Richardson-Effekt) beruhte, einer Voraussetzung für alle Vakuumröhren. 1897 begann die Entwicklung der Braunschen Röhre durch Karl Ferdinand Braun. Im Jahre 1899 begann daraufhin die Entwicklung der Spitzendiode. 1904 erlangte John Ambrose Fleming ein Patent auf eine Vakuumdiode.

  • Zur Geschichte der Elektronenröhre

Zu Beginn des 20. Jahrhunderts war die Entwicklung von Elektronenröhren bereits fortgeschritten. Die ersten Elektronenröhren wurden entwickelt und bereits in elektrischen Schaltungen genutzt. Mit der Triode stand zum ersten Mal ein brauchbares Bauelement zum Aufbau von Verstärkern zur Verfügung. Dadurch wurden Erfindungen wie Rundfunk, Fernsehen und Radar möglich.

Im Jahr 1948 wurde der erste Transistor vorgestellt. Transistoren können wie Röhren als Verstärker, elektronische Schalter oder als Oszillator eingesetzt werden. Jedoch lassen sich Transistoren im Gegensatz zu Vakuumröhren, die sehr viel Raum und elektrische Leistung brauchen, sehr klein fertigen, denn sie basieren auf Halbleitertechnologie, wodurch sehr viel höhere Stromdichten möglich sind.

In den 1960er Jahren gelang die Fertigung von kompletten, aus mehreren Transistoren und weiteren Bauelementen bestehenden Schaltungen auf einem einzigen Siliziumkristall. Die dadurch eingeleitete Technik der Integrierten Schaltkreise (kurz IC von engl. integrated circuit) hat seitdem zu einer stetigen Miniaturisierung geführt. Heute ist die Halbleiterelektronik der wichtigste Zweig der Elektronik. Als Schlüsseltechnologie für die Zukunft wird zuweilen die Polytronik gesehen. Sie bezeichnet die Zusammenführung kunststoffbasierter Systemfunktionen zu der Vision „intelligentes Plastik“.

Analogelektronik

Die Analogtechnik beschäftigt sich vor allem mit der Verarbeitung von kontinuierlichen Signalen. Man nutzt dabei die physikalischen Gesetze aus, die das Verhalten der Bauelemente (Widerstände, Kondensatoren, Transistoren, Röhren, usw.) beschreiben, oder man schafft durch Schaltungsprinzipien günstige Voraussetzungen. Typische Grundschaltungen sind Stromquellen, Stromspiegel, Differenzverstärker und Kaskaden, sowie Referenzelemente wie die Bandgap. Daraus lassen sich kompliziertere Schaltungen aufbauen, wie z. B. Verstärker, mit dessen Hilfe sich weitere Funktionen aufbauen lassen (Oszillator, Filter, etc.). Der Operationsverstärker ist ein Verstärker mit einem Differenzeingang (Differenzverstärker). Sein Name rührt daher, dass mit ihm mathematische Operationen (Subtraktion, Addition, Integration, etc.) ausgeführt werden können. Operationsverstärker finden in der Analogelektronik breite Anwendung. Der Genauigkeit der Signalverarbeitung sind in der Analogelektronik durch die Herstellungstoleranzen der Bauelemente und deren Nichtidealitäten (z. B. Rauschen, Nichtlinearität, Hysterese) sowie durch weitere störende Effekte wie Übersprechen und Einkopplungen von Störsignalen Grenzen gesetzt. Es wurden sehr weit fortgeschrittene Verfahren entwickelt, die solche Fehler kompensieren oder minimieren und damit Genauigkeiten im Bereich von 0,1 % bis 0,001 % erlauben. Solch hohe Genauigkeit ist z. B. notwendig, um Analog-Digital-Umsetzer mit 20 Bit Auflösung zu realisieren.

Digitalelektronik

Die Digitalelektronik oder Digitaltechnik beschäftigt sich mit der Verarbeitung von diskreten Signalen (ausgedrückt als Zahlen oder logische Werte). Die Diskretisierung betrifft dabei immer den Wertebereich und oft auch zusätzlich das zeitliche Verhalten. In der Praxis beschränkt man sich auf zweiwertige Systeme, d. h.: Spannungen oder Ströme sollen – abgesehen von Übergangsvorgängen – nur zwei Werte annehmen (an/aus, 1 oder 0, auch high/low, kurz H/L). Die Änderung der Werte kann bei zeitdiskreten Systemen nur zu bestimmten, meist äquidistanten Zeitpunkten stattfinden, den ein Takt vorgibt. Bei der Digitalelektronik werden analoge Signale entweder vor der Verarbeitung mit Hilfe von Analog-Digital-Umsetzern digitalisiert (in Digitalsignale umgesetzt) oder existieren bereits von vornherein als diskrete Werte. Transistoren werden in der Digitaltechnik in der Regel als Schaltverstärker und nicht als analoge Verstärker eingesetzt.

Der Vorteil der Digitalelektronik liegt in der Tatsache, dass im Anschluss an die Digitalisierung die bei der Analogelektronik erwähnten störenden Effekte keine Rolle mehr spielen, jedoch auf Kosten des Bauteilaufwandes. Ist z. B. eine analoge Schaltung mit einem maximalen Fehler von 0,1 % behaftet, so kann dieser Fehler ab ca. 10 Bit Datenbreite von digitalen Schaltungen unterboten werden. Ein analoger Multiplizierer benötigt etwa 20 Transistoren, ein digitaler Multiplizierer mit derselben Genauigkeit mehr als die 20-fache Anzahl. Der Aufwand wächst durch die Digitalisierung also zunächst an, was aber durch die immer weiter vorangetriebene Miniaturisierung mehr als kompensiert wird. Heute lassen sich auf einem integrierten Schaltkreis eine sehr große Menge von Transistoren realisieren (die Anzahl geht typisch in die 10 Millionen). Der Vorteil ist nun, dass z. B. die Spannungspegel in erheblichem Maße variieren können, ohne die korrekte Interpretation als 1 oder 0 zu behindern. Damit ist es möglich, dass die Bauelemente der integrierten Schaltungen sehr ungenau sein dürfen, was wiederum die weitere Miniaturisierung ermöglicht. Die Eigenschaften der Schaltung werden also weitgehend von den physikalischen Eigenschaften der Bauelemente entkoppelt.

Die vereinfachte Beschreibung digitaler Schaltungen mit den zwei Zuständen H und L reicht vor allem bei immer höheren Geschwindigkeiten und Frequenzen nicht immer aus, um sie zu charakterisieren oder zu entwerfen. Im Grenzfall befindet sich die Schaltung den überwiegenden Teil der Zeit im Übergang zwischen den beiden logisch definierten Zuständen. Daher müssen in solchen Fällen oft zunehmend analoge und hochfrequenztechnische Aspekte berücksichtigt werden. Auch bei langsamen Schaltungen kann es Probleme geben, die nur durch analoge Betrachtungsweisen zu verstehen sind; als Beispiel sei das Problem der Metastabilität von Flip-Flops genannt.

Logik der Digitalelektronik

Digitale Schaltungen – auch Schaltsysteme oder logische Schaltungen genannt – bestehen hauptsächlich aus einfachen Logikelementen, wie AND, NAND, NOR, OR, NOT-Gattern und Komponenten, mit denen digitale Signale gespeichert werden können, z. B. Flipflops oder Zählern. Alle diese logischen Funktionen lassen sich mit im sogenannten Schalterbetrieb arbeitenden elektronischen Bauelementen (z. B. Transistoren) realisieren. Durch die Integration dieser Schaltungen auf einem Chip (monolithische Schaltung) entstehen komplexe elektronische Bauelemente wie beispielsweise Mikroprozessoren.

Hochfrequenzelektronik

Die Hochfrequenzelektronik oder Hochfrequenztechnik beschäftigt sich vorwiegend mit der Erzeugung und der Ausstrahlung, bzw. dem Empfang und der Verarbeitung von elektromagnetischen Wellen. Anwendungen davon sind z. B. die Funktechnik mit Rundfunk, Fernsehen, Radar, Fernsteuerung, drahtlose Telefonie, Navigation aber auch die Vermeidung unerwünschter Schwingungen (Störung, EMV) und unkontrollierter Abstrahlung (Abschirmung). Weitere Bereiche der Hochfrequenzelektronik sind Mikrowellentechnik, kabelgebundene Informationsübertragung oder Bereiche der Medizinelektronik. Der Übergang von der Niederfrequenz- zur Hochfrequenztechnik ist fließend.

Leistungselektronik

Leistungselektronik bezeichnet das Teilgebiet der Elektrotechnik, welches die Umformung elektrischer Energie mit elektronischen Bauelementen zur Aufgabe hat. Die Umformung elektrischer Energie mit Transformatoren oder mit rotierenden Maschinensätzen wird dahingegen nicht zur Leistungselektronik gerechnet.

Bauelemente

Verschiedene elektronische Bauelemente

Wichtige Bauelemente sind Elektronenröhre, Integrierte Schaltungen, Halbleiterdiode, Zener-Diode, Transistor, Thyristor, Widerstand, Kondensator und Induktivität. Aus wissenschaftlicher Sicht handelt es sich bei den letzten drei nicht um Anordnungen, die elektrische Effekte darstellen oder nutzen, die klassische Elektrodynamik genügt hier vollauf. Da sie aber mit den tatsächlich elektronischen Bauelementen häufig zusammen verbaut und verkauft werden, hat sich dessen ungeachtet in der Praxis diese Zuordnung allgemein durchgesetzt.

Man spricht von passiven Bauelementen, wenn primär Widerstände, Kondensatoren und Induktivitäten gemeint sind. Unter den aktiven Bauelementen werden meist alle Arten von Integrierten Schaltungen, Halbleiterbauelementen und Elektronenröhren verstanden.

Alle diese Bauelemente werden in einer großen Typenvielfalt angeboten [1]. Durch die exakt berechnete Zuordnung der logisch miteinander arbeitenden elektronischen Bauteile auf einer Platine, entsteht ein elektronischer Schaltkreis.

Ein selbständig und logisch arbeitender Rechnen-Operator-Chip ist der moderne Prozessor, der nicht nur auf dem Mainboard eines Computers zu finden ist, sondern ein Bestandteil moderner Industrie- und Fahrzeugtechnik ist.

Bedeutung

Die Elektronik umfasst heute unzählige Gebiete, von der Halbleiterelektronik über die Quantenelektronik bis hin zur Nanoelektronik. Seit dem Siegeszug des Computers, der stetigen Entwicklung der Informationstechnologie und der zunehmenden Automation hat sich die Bedeutung der Elektronik beständig erweitert. Die Elektronik nimmt heute in unserer Gesellschaft einen großen Stellenwert ein und ist aus vielen Bereichen nicht mehr wegzudenken.

Elektronikfertigung

Im Jahre 2007 kamen 38 % aller weltweit hergestellten Elektronikprodukte aus der Asia-Pacific-Region. Im Jahre 1995 lag dieser Anteil noch bei 20 %. Allein China erhöhte seinen Anteil von 3 % im Jahre 1995 auf 16 % in 2007. Unter den Top-10-Ländern befinden sich auch Südkorea, Malaysia, Singapur und Thailand. Der Anteil von Westeuropa lag 2007 bei 19 % der globalen Produktion (entspricht ca. 192 Mrd. Euro). In der Leistungsreihenfolge der Größe der Elektronikfertigung in Westeuropa herrscht folgende Rangliste (Stand 2006): Deutschland, Frankreich, Großbritannien, Irland, Italien.[2]

Siehe auch

  •  Portal: Elektrotechnik – Übersicht zu Wikipedia-Inhalten zum Thema Elektrotechnik
  •  Portal: Mikroelektronik – Übersicht zu Wikipedia-Inhalten zum Thema Mikroelektronik

Für freizeitmäßig betriebene Hobbyelektronik siehe Hobbyelektronik. Für Elektronik im KFZ siehe Automobilelektronik.

  • Elektroindustrie
  • Elektronikschrott
  • Liste elektronischer Bauteile
  • Nanoelektronik

Literatur

  • Karsten Block, Hans J. Hölzel, Günter Weigt: Bauelemente der Elektronik und ihre Grundschaltungen, Stam-Verlag, ISBN 3-8237-0214-9
  • Stefan Goßner, : Grundlagen der Elektronik. 8. Auflage, Shaker Verlag, Aachen 2011, ISBN 978-3-8265-8825-9.
  • Ekbert Hering, Klaus Bressler, Jürgen Gutekunst: Elektronik für Ingenieure, Springer, Berlin 2001, ISBN 3-540-41738-9.
  • P. Horowitz, W. Hill:: Die hohe Schule der Elektronik. Bd. 1 Analogtechnik, Elektor-Verlag, ISBN 978-3-89576-024-2.
  • P. Horowitz, W. Hill:: Die hohe Schule der Elektronik. Bd. 2 Digitaltechnik, Elektor-Verlag, ISBN 978-3-89576-025-9.
  • K. Küpfmüller, G. Kohn: Theoretische Elektrotechnik und Elektronik, Eine Einführung. 16., vollst. neu bearb. u. aktualisierte Aufl., Springer, Berlin 2005, ISBN 3-540-20792-9.
  • Patrick Schnabel, : Elektronik-Fibel, 4. vollständig überarbeitete Auflage, 320 Seiten, BoD GmbH, Norderstedt 2006, ISBN 978-3-8311-4590-4.
  • U. Tietze, C. Schenk: Halbleiter-Schaltungstechnik. Springer, Berlin, ISBN 3-540-42849-6.

Einzelnachweise

  1. Listen elektronischer Bauelemente und ihre Lieferanten: FBDi Directory 09 [1]
  2. Yearbook of World Elektronik Data von Reed Electronics Research, Juni 2006

Weblinks

News mit dem Thema Elektronik

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
08.02.2023
Atomphysik
Neue Methode für gezieltes Molekül-Design
Das Design von neuartigen Molekülen und Materialien mit spezifischen Eigenschaften kann erhebliche Fortschritte für industrielle Prozesse, die Wirkstoffentwicklung oder die Optoelektronik bringen.
05.10.2021
Festkörperphysik | Quantenphysik
Neue Art von Magnetismus in Kult-Material entdeckt
Ein internationales Wissenschaftsteam macht eine wegweisende Entdeckung in Strontiumruthenat.
07.10.2020
Optik | Quantenphysik
Intelligente Nanomaterialien für Photonik
In Kombination mit Lichtwellenleitern ermöglichen 2D-Materialien mit herausragenden optischen Eigenschaften ganz neue Anwendungen im Bereich der Sensorik, der nichtlinearen Optik und der Quantenelektronik.
15.09.2020
Quantenoptik
Einzelphotonen vom Siliziumchip: Forschungsteam entwickelt neuartige Quelle für Quanten-Lichtteilchen
Die Quantentechnologie gilt als überaus zukunftsträchtig: Quantencomputer sollen in einigen Jahren Datenbanksuchen, KI-Systeme und Simulationsrechnungen revolutionieren.
12.08.2020
Elektrodynamik | Quantenphysik | Teilchenphysik
Effizientes Ventil für Elektronenspins
Forscher der Universität Basel haben zusammen mit Kolleginnen aus Pisa ein neues Konzept entwickelt, das den Eigendrehimpuls (Spin) von Elektronen verwendet, um elektrischen Strom zu schalten.
02.10.2019
Elektrodynamik | Festkörperphysik | Quantenphysik
Topologie auf der Spur: ein ultraschnelles Verfahren kitzelt kritische Informationen aus Quantenmaterialien heraus
Topologische Isolatoren sind exotische Quantenmaterialien, die dank einer besonderen elektronischen Struktur entlang ihrer Oberflächen und Kanten elektrischen Strom leiten wie ein Metall.
17.09.2019
Elektrodynamik | Wellenlehre
Leistung effizient erzeugen – bei hohen Frequenzen, hohen Spannungen und mit kurzen Schaltzeiten
Das FBH präsentiert auf der „European Microwave Week“ (EuMW) sein Leistungsspektrum in der III/V-Elektronik: Komponenten für die Digitalisierung in der mobilen Kommunikation, für industrielle und biomedizinische Systeme sowie für den Einsatz im Weltraum.
11.07.2019
Elektrodynamik | Festkörperphysik
Leistungsstärkere weiße OLEDs: Dresdner Physiker befreien Photonen mittels Nanostrukturen
Organische Leuchtdioden (OLEDs) haben dank intensiver Forschungsarbeiten in den letzten Jahrzehnten den Elektronikmarkt immer weiter erobert – von OLED-Handydisplays bis zu herausrollbaren Fernsehbildschirmen, die Liste der Anwendungsfelder ist lang.
08.07.2019
Elektrodynamik
Magnetisches Origami für die Mikroelektronik
Forscher aus Dresden und Chemnitz berichten in der Fachzeitschrift „Nature Communications“ über neue Methode zur Herstellung hochpotenter dreidimensionaler Mikroelektronik.
04.06.2019
Elektrodynamik | Festkörperphysik
Neues Material mit magnetischem Formgedächtnis
Forschende des Paul Scherrer Instituts PSI und der ETH Zürich haben ein neues Material entwickelt, dessen Formgedächtnis durch Magnetismus aktiviert wird.
26.04.2019
Elektrodynamik | Festkörperphysik
Biegsame Schaltkreise für den 3D-Druck
Eine Forschungskooperation von Universität Hamburg und DESY hat ein 3D-Druck-taugliches Verfahren entwickelt, mit dem sich transparente und mechanisch flexible elektronische Schaltkreise produzieren lassen.
27.03.2019
Festkörperphysik | Quantenphysik
Bloß kleine Wellen schlagen: Forscherteam erzeugt ultrakurze Spinwellen in einem einfachen Material
Die Spintronik gilt als vielversprechendes Konzept für die Elektronik der Zukunft.
22.03.2019
Quantenoptik
Die Zähmung der Lichtschraube
Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen.
08.03.2019
Elektrodynamik
Ultradünne Deckschicht für Elektroden besteht Härtetest
Elektronik auf Kunststoffbasis – was klingt wie Zukunftsmusik, kommt durch eine Entdeckung aus Marburg einen großen Schritt voran: Elektrische Eigenschaften von Metallelektroden lassen sich präzise kontrollieren, wenn ihr eine extrem dünne organische Schicht aufliegt, die aus einer einzigen Lage von Molekülen besteht.
08.03.2019
Elektrodynamik | Festkörperphysik
Moiré-Effekt verändert elektronische Eigenschaften von dreilagigem Material
Elektronik auf Kunststoffbasis – was klingt wie Zukunftsmusik, kommt durch eine Entdeckung aus Marburg einen großen Schritt voran: Elektrische Eigenschaften von Metallelektroden lassen sich präzise kontrollieren, wenn ihr eine extrem dünne organische Schicht aufliegt, die aus einer einzigen Lage von Molekülen besteht.
14.01.2019
Elektrodynamik
5000 mal schneller als ein Computer
Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom.
15.11.2018
Teilchenphysik
Rasende Elektronen unter Kontrolle
Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit.
17.10.2018
Festkörperphysik
Auf dem Weg zu neuen Materalien für die Elektronik - Auf Wiedersehen, Silizium
Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist.
27.09.2018
Akustik
Mit dem Rauschen arbeiten
Rauschen ist meistens ein unerwünschtes Phänomen, etwa bei einem aufgenom-menen Gespräch bei Umgebungslärm, astronomischen Beobachtungen mit großen Hintergrundsignalen oder bei der Bildverarbeitung.
26.09.2018
Elektrodynamik
Höchste Taktraten lassen Elektronik kalt
nternationales Physiker-Team kombiniert Lichtwellen-Elektronik mit topologischen Isolatoren.
10.09.2018
Teilchenphysik
Graphen ermöglicht Taktraten im Terahertz-Bereich
Graphen gilt als vielversprechender Kandidat für die Nanoelektronik der Zukunft.
26.06.2018
Festkörperphysik | Quantenoptik
Asymmetrische Nano-Antennen liefern Femtosekunden-Pulse für Optoelektronik
Einem Team unter Leitung der TUM-Physiker Alexander Holleitner und Reinhard Kienberger ist es erstmals gelungen, mit Hilfe nur wenige Nanometer großer Metallantennen ultrakurze, elektrische Pulse auf einem Chip zu erzeugen, diese dann einige Millimeter weiter wieder kontrolliert auszulesen.
29.05.2018
Festkörperphysik | Quantenphysik | Quantenoptik | Teilchenphysik
Ultradünner Supraleiter ebnet Weg zu neuen quantenelektronischen Instrumenten
Forschern des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) ist es gemeinsam mit Kollegen aus Karlsruhe, London und Moskau gelungen, erstmals einen kohärenten Quanteneffekt mit einem bei tiefen Temperaturen kontinuierlich supraleitenden Nanodraht experimentell nachzuweisen und damit einen neuen Quantendetektor zu realisieren.
16.04.2018
Festkörperphysik | Quantenoptik
Ein Wimpernschlag vom Isolator zum Metall
Dank der geschickten Kombination neuartiger Technologien lassen sich vielversprechende Materialien für die Elektronik von morgen untersuchen.
11.07.2017
Festkörperphysik
Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet
Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen.
11.07.2017
Klassische Mechanik | Quantenphysik
Klassische Mechanik hilft Quantencomputer zu steuern: Mit dem Tennisschläger in die Quantenwelt
Quantentechnik gilt als Zukunftstechnologie: kleiner, schneller und leistungsfähiger als herkömmliche Elektronik.

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.