Elektrische Energie

Als elektrische Energie bezeichnet man Energie, die mittels der Elektrizität übertragen oder in elektrischen Feldern gespeichert wird. Bei der Übertragung von Energie mit Hilfe der Elektrizität spricht man auch von elektrischer Arbeit.

In der Physik wird für die elektrische Energie das Formelzeichen E und die Einheit Wattsekunde (Einheitenzeichen: Ws) oder Joule (J) verwendet. Dabei ist 1 Ws = 1 J. Bei der Messung des Energieumsatzes im Bereich der elektrischen Energietechnik ist die Maßeinheit kWh (Kilowattstunde) üblich. 1 kWh = 3.600.000 Ws, 1 Ws ≈ 2,778·10−7 kWh.

Begriff

Die elektrische Energie $ E $, die auch als elektrische Arbeit $ W $ bezeichnet wird, ergibt sich aus dem Integral des Produkts der elektrischen Spannung $ u(t) $ und Stromstärke $ i(t) $ über die Zeit $ t $:

$ E = \int_{t_0}^{t_1} u(t) \cdot i (t) \cdot \mathrm{d}t $

Für den Fall einer konstanten elektrischen Spannung $ U $ und einer konstanten Stromstärke $ I $ ergibt sich daher die elektrische Energie aus dem Produkt der beiden Größen mit der Zeitdifferenz $ \Delta t $ ($ \Delta t = t_1 - t_0 $):

$ E = U \cdot I \cdot \Delta t $

Elektrische Energie kann wie jede andere Energie nicht vernichtet oder erzeugt werden, sondern wird grundsätzlich in eine andere Erscheinungsform gewandelt. Mit Hilfe des Energieerhaltungssatzes kann die elektrische Energie bestimmt werden, indem man die zu ihrer Erzeugung notwendige mechanische Energie berechnet.

Elektrische Energie

In Kraftwerken, Batterien und Akkumulatoren wird elektrische Energie z. B. aus Wärmeenergie bzw. chemischer Energie gewandelt, über Stromleitungen zu den Verbrauchern transportiert und bei den Verbrauchern in andere Energieformen (Kraft, Licht, Wärme) gewandelt.

Elektrische Energie kann aber auch im elektrostatischen Feld von Kondensatoren gespeichert werden. Bei größeren Mengen verwendet man Doppelschicht-Kondensatoren. Die Energie, die in einem Kondensator steckt, ist

$ E = \frac{1}{2} \cdot C \cdot U^2 $

wobei $ C $ die Kapazität des Kondensators und $ U $ die an ihm anliegende elektrische Spannung ist.

Magnetische Energie

Magnetische Energie äußert sich in einem magnetischen Feld und übt eine Kraft auf bewegte Ladungen aus, die so genannte Lorentzkraft. Man unterscheidet elektromagnetische und elektrodynamische Kräfte. Aufgrund ihrer Stärke werden sie gerne in Elektromotoren und Generatoren verwendet. Gespeichert werden kann magnetische Energie im Alltag nicht sehr dauerhaft in einer Spule oder Drossel. Mit supraleitenden magnetischen Energiespeichern hingegen kann eine hohe Energie kurzzeitig gespeichert werden.

In einem elektrischen Schwingkreis wechselt elektrische Energie im Takt der Frequenz mit magnetischer Energie. Die Energie, die in einer Spule steckt ist

$ E = \frac{1}{2} \cdot L \cdot I^2 $

wobei L die Induktivität der Spule und I der sie durchfließende elektrische Strom ist.

Elektrische Energie in einem elektrischen Feld

Wird eine (Probe-)Ladung in einem elektrischen Feld bewegt, wird elektrische Arbeit verrichtet, wobei es zwei dem Vorzeichen nach zu unterscheidende Bewegungsrichtungen gibt:

  • Ist die Bewegungsrichtung entgegen der Kraftrichtung des elektrischen Feldes, wird (von außen) Arbeit verrichtet und die potentielle Energie der Ladung steigt. Dieser Vorgang entspricht immer einer Ladungstrennung.
  • Ist die Bewegungsrichtung dagegen in Richtung der Kraftrichtung des Feldes, verrichtet das elektrische Feld Arbeit an der Ladung. Frei bewegliche Ladungsträger werden entlang des elektrischen Feldes im Leiter bis zur mittleren Driftgeschwindigkeit beschleunigt und es findet eine Umwandlung von potenzieller Energie in kinetische Energie statt (siehe auch Beweglichkeit). Insgesamt also verrichtet die Spannungsquelle in dem elektrischen Verbraucher (Widerstand, elektrischer Motor) mechanische Arbeit und produziert dabei auch stets Wärme (dissipierte Arbeit).

Die Arbeit wird, wie andere physikalische Arbeit auch, in Wattsekunden (Ws) oder Joule (J) angegeben. Die Angabe in Newtonmetern (N m) wäre theoretisch möglich, ist aber in der Praxis nicht anzutreffen.

Zur Verschiebung einer Probeladung $ q $ in einem elektrischen Feld $ \vec E $ von Punkt $ a $ nach $ b $ erhält (verrichtet) man elektrische Arbeit.

Motiviert von der mechanischen Definition der Arbeit

$ W $ = Arbeit in J oder Ws
$ \vec F $ = Kraft in N
$ \mathrm{d}\vec s $ = Strecke in m
$ Q $ = Ladung in C
$ \vec E $ = Feld in V/m
$ U $ = Spannung in V
$ W=\int_a^b \vec F (s) \cdot \mathrm{d}\vec s $

erhält man mit der resultierenden Kraft $ \ \vec F $ auf eine Ladung Q im elektrischen Feld :$ \ \vec E $

$ \vec F = Q \cdot \vec E $

die elektrische Arbeit

$ W = \int_a^b Q \cdot \vec E (s) \cdot \mathrm{d}\vec s $,

wobei $ \mathrm{d}\vec s $ die aufintegrierten Wegstückchen sind. In einem räumlich konstanten Feld wird aus dem Integral einfach

$ W = Q \cdot \vec E \cdot \vec s $.

In einem konservativen elektrischen Feld wird das Wegintegral wegunabhängig und es lässt sich die Spannung $ U $ (elektrisches Potential) gemäß

$ U\Big|_a^b = - \int_a^b \vec E (s) \cdot \mathrm{d}\vec s $

einführen. Damit erhält man die vereinfachte Formel

$ W = - Q \cdot U $

Hausgebrauch

Für den Hausgebrauch benötigt man das Verständnis der elektrischen Arbeit, wenn man elektrische Verbraucher wie beispielsweise einen Kühlschrank oder elektrische Lampen kauft. Hier ist es wichtig zu wissen, dass die Zeit, die das Gerät in Betrieb ist, die wesentliche Größe zur Bestimmung der vom elektrischen Gerät benötigten Energie ist. Der Bedarf an elektrischer Stromstärke in Ampere ist konstruktionsbedingt vom Hersteller festgelegt und entscheidet sich deshalb beim Kauf. Die Netzspannung beträgt in der Regel 230 Volt bzw. 400 Volt Wechselspannung, es sei denn, man greift auf Batterien, Akkumulatoren oder ein Netzteil mit geringerer Spannung zurück.

Literatur

  •  Karl Küpfmüller, Gerhard Kohn: Theoretische Elektrotechnik und Elektronik. 14. Auflage. Springer, 1993, ISBN 3-540-56500-0.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

06.05.2021
Astrophysik - Relativitätstheorie
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Physikdidaktik - Quantenphysik
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat.
06.05.2021
Festkörperphysik - Quantenphysik
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
28.04.2021
Galaxien - Sterne
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.