Einstein-Modell

In der Festkörperphysik beschreibt das Einstein-Modell (nach Albert Einstein) eine Methode, um den Beitrag der Gitterschwingungen (Phononen) zur Wärmekapazität eines kristallinen Festkörpers zu berechnen. Es ist dabei nicht so erfolgreich wie das Debye-Modell, da das Einstein-Modell sich ausschließlich auf optische Phononen anwenden lässt, während Letzteres akustische Phononen beschreibt.

Grundlagen des Modells

Die Gitterschwingungen des Kristalls werden gequantelt, d. h. der Festkörper kann Schwingungsenergie nur in diskreten Quanten $ \hbar\omega_E $ aufnehmen. Diese Quanten nennt man auch Phononen. Man beschreibt den Festkörper dann als aus N quantenharmonischen Oszillatoren bestehend, die jeweils in drei Richtungen unabhängig schwingen können. Die Besetzungwahrscheinlichkeit $ \langle n \rangle $ einer solchen Schwingungsmode (eines Phonons) hängt von der Temperatur T ab und folgt (da Phononen Bosonen sind) der Bose-Einstein-Verteilung:

$ \langle n\rangle =\frac{1}{\exp\left(\frac{\hbar\omega_E}{k_BT}\right)-1} $

Damit ergibt sich die innere Energie U im Festkörper zu (Es wurde die Quantisierungsbedingung des harmonischen Oszillators verwendet):

$ U=3N\cdot\hbar\omega_E\cdot \left(\langle n\rangle+\frac{1}{2}\right)= 3N\cdot\hbar\omega_E\cdot\left[\frac{1}{\exp\left(\frac{\hbar\omega_E}{k_BT}\right)-1}+\frac{1}{2}\right] $

Der Beitrag $ \frac{\hbar\omega_E}{2} $ gibt die Nullpunktenergie an. Der Beitrag der Phononen zur Wärmekapazität ist dann:

$ C_V=\left(\frac{\partial U}{\partial T}\right)_{V={\rm const}}=\frac{3N}{k_BT^2}\frac{(\hbar\omega_E)^2}{\left[\exp\left(\frac{\hbar\omega_E}{k_BT}\right)-1\right]^2}\cdot\exp\left(\frac{\hbar\omega_E}{k_BT}\right) $

Mit der Einstein-Temperatur $ \Theta_E=\frac{\hbar\omega_E}{k_B} $ ergibt sich eine einfachere Schreibweise:

$ C_V^{\rm mol}\left(T\right)=3 N k_B \cdot\left(\frac{\Theta_E}{T}\right)^2\cdot\frac{\exp\left(\frac{\Theta_E}{T}\right)}{\left[\exp\left(\frac{\Theta_E}{T}\right)-1\right]^2} $

Versagen bei tiefen Temperaturen

Es ergibt sich im Limes großer bzw. kleiner Temperaturen:

$ T\rightarrow\infty:\ \ C_V\rightarrow 3N\cdot k_B;\ \ \ \ \ \ \ \ \ \ T\rightarrow 0:\ \ C_V\propto e^{-\Theta_E/T}\rightarrow 0 $

Wie das Debye-Modell liefert das Einstein-Modell das korrekte Hochtemperaturlimit nach dem Dulong-Petit-Gesetz. Der oben beschriebene Verlauf von CV(T) für kleine Temperaturen weicht allerdings erheblich von Messungen ab. Dies hängt mit der Annahme zusammen, alle harmonischen Oszillatoren im Festkörper würden mit einer einheitlichen Frequenz schwingen. Die Verhältnisse im realen Festkörper sind deutlich komplizierter.

Literatur

  • "Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme", A. Einstein, Annalen der Physik, volume 22, pp. 180-190, 1907.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
18.02.2021
Quantenphysik - Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
18.02.2021
Quantenoptik
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
18.02.2021
Planeten
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.