Dirac-Matrizen

Erweiterte Suche

Die Dirac-Matrizen (nach dem britischen Physiker Paul Dirac), auch Gamma-Matrizen genannt, sind vier Matrizen, die der Dirac-Algebra genügen. Sie treten in der Dirac-Gleichung auf.

Definition

Die Dirac-Matrizen $ \gamma ^{0},\,\gamma ^{1}\,,\gamma ^{2}\, $ und $ \,\gamma ^{3}\, $ erfüllen definitionsgemäß die Dirac-Algebra, das heißt, die algebraischen Bedingungen

$ {\begin{aligned}\gamma ^{0}\gamma ^{0}&=1\,,&\gamma ^{1}\gamma ^{1}&=-1\,,&\gamma ^{2}\gamma ^{2}&=-1\,,&\gamma ^{3}\gamma ^{3}&=-1\,,\\\gamma ^{0}\gamma ^{1}&=-\gamma ^{1}\gamma ^{0}\,,&\gamma ^{0}\gamma ^{2}&=-\gamma ^{2}\gamma ^{0}\,,&\gamma ^{0}\gamma ^{3}&=-\gamma ^{3}\gamma ^{0}\,,&&\\\gamma ^{1}\gamma ^{2}&=-\gamma ^{2}\gamma ^{1}\,,&\gamma ^{1}\gamma ^{3}&=-\gamma ^{3}\gamma ^{1}\,,&\gamma ^{2}\gamma ^{3}&=-\gamma ^{3}\gamma ^{2}\,.&&\end{aligned}} $

Diese Bedingungen betreffen Antikommutatoren, also die Summe der Produkte zweier Matrizen in beiden Reihenfolgen,

$ \{A,B\}=A\,B+B\,A\,. $

In Indexnotation, in der $ \mu $ und $ \nu $ für Zahlen aus $ \{0,1,2,3\} $ stehen, schreiben sich die Bedingungen an die Dirac-Matrizen zusammenfassend als

$ \{\gamma ^{\mu },\gamma ^{\nu }\}=\gamma ^{\mu }\gamma ^{\nu }+\gamma ^{\nu }\gamma ^{\mu }=2\,\eta ^{\mu \nu }I_{4}\,. $

Dabei sind $ \eta ^{\mu \nu } $ die Komponenten der Minkowski-Metrik mit Signatur (1,−1,−1,−1) und $ I_{4} $ ist die 4x4 Einheitsmatrix.

Die γ5-Matrix

Zusätzlich zu den vier Gamma-Matrizen definiert man noch die Matrix

$ \gamma ^{5}=\mathrm {i} \,\gamma ^{0}\gamma ^{1}\gamma ^{2}\gamma ^{3}\ . $

Sie ist ihr eigenes Inverses, $ \gamma ^{5}\gamma ^{5}=1\,, $ ist hermitesch, antivertauscht mit den Gamma-Matrizen, $ \gamma ^{5}\gamma ^{\mu }=-\gamma ^{\mu }\gamma ^{5}\,, $ und demnach mit jedem Produkt von Gamma-Matrizen mit einer ungeraden Anzahl von Faktoren.

Eigenschaften

Die Gamma-Matrizen erzeugen eine Clifford-Algebra. Jede irreduzible Darstellung dieser Algebra durch Matrizen besteht aus $ 4\times 4 $-Matrizen. Die Elemente des Vektorraumes, auf den sie wirken, heißen Spinoren. Verschiedene Darstellungen der Dirac-Algebra sind einander äquivalent, das heißt, sie unterscheiden sich nur durch die gewählte Basis. Insbesondere sind die negativen transponierten Matrizen $ -\gamma ^{\mu \,{\text{T}}} $ und die hermitesch adjungierten Matrizen $ \gamma ^{\mu \,\dagger } $ den Matrizen $ \,\gamma ^{\mu }\, $ äquivalent, denn sie erfüllen ebenfalls die Dirac-Algebra. Es gibt daher eine Matrix $ A $ und eine Matrix $ C $, so dass

$ C\gamma ^{\mu }C^{-1}=-\gamma ^{\mu \,{\text{T}}}\ ,\quad A\gamma ^{\mu }A^{-1}=\gamma ^{\mu \,\dagger }\,. $

Die Matrix $ A $ ist zur Konstruktion von Skalaren, Vektoren und Tensoren aus Spinoren wichtig, die Matrix $ C $ tritt bei der Ladungskonjugation auf.

Jedes Produkt mehrerer Dirac-Matrizen lässt sich bis auf ein Vorzeichen als Produkt verschiedener Dirac-Matrizen in lexographischer Ordnung schreiben, denn das Produkt zweier verschiedener Gamma-Matrizen kann auf Kosten eines Vorzeichens umgeordnet werden. Zudem ist das Quadrat jeder Gamma-Matrix 1 oder -1. Die Produkte verschiedener Gamma-Matrizen bilden zusammen mit der Eins-Matrix und den negativen Matrizen eine Gruppe mit den 32 Elementen,

$ \pm 1\,,\,\pm \gamma ^{\mu }\,,\,\pm \gamma ^{\mu }\gamma ^{\nu }\,,\,\mu <\nu \,,\,\pm \gamma ^{\lambda }\gamma ^{\mu }\gamma ^{\nu }\,,\,\lambda <\mu <\nu \,,\,\pm \gamma ^{0}\gamma ^{1}\gamma ^{2}\gamma ^{3}\,,\,{\text{wobei}}\,\lambda ,\mu ,\nu \in \{0,1,2,3\}\,. $

Da jede Darstellung einer endlichen Gruppe bei geeigneter Basiswahl unitär ist, ist auch jede Darstellung der Gamma-Matrizen bei geeigneter Wahl der Basis unitär. Zusammen mit der Dirac-Algebra heißt dies, dass $ \gamma ^{0} $ hermitesch und die drei anderen $ \gamma $-Matrizen antihermitesch sind,

$ \gamma ^{0\,\dagger }=\gamma ^{0}\,,\,\gamma ^{1\,\dagger }=-\gamma ^{1}\,,\,\gamma ^{2\,\dagger }=-\gamma ^{2}\,,\,\gamma ^{3\,\dagger }=-\gamma ^{3}\,. $

In unitären Darstellungen bewirkt $ A=\gamma ^{0} $ die Äquivalenztransformation zu den adjungierten Matrizen

$ \gamma ^{0}\gamma ^{\mu }\gamma ^{0}=\gamma ^{\mu \,\dagger }\,. $

Mithilfe der Eigenschaften von $ \gamma ^{5} $ kann gezeigt werden, dass die Spur jedes Produktes von Gamma-Matrizen mit einer ungeraden Anzahl von Faktoren verschwindet.

$ {\begin{aligned}{\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}{\bigr )}&={\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}\gamma ^{5}\gamma ^{5}{\bigr )}=-{\text{Spur}}\,{\bigl (}\gamma ^{5}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}\gamma ^{5}{\bigr )}\\&=-{\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}\gamma ^{5}\gamma ^{5}{\bigr )}=-{\text{Spur}}\,{\bigl (}\gamma ^{\mu _{1}}\dots \gamma ^{\mu _{2n+1}}{\bigr )}\end{aligned}} $

Im vorletzten Schritt haben wir dabei verwendet, dass die Spur eines Produktes sich bei zyklischer Vertauschung der Faktoren nicht ändert und demnach $ {\text{Spur}}\,(\gamma ^{5}\,B)={\text{Spur}}\,(B\,\gamma ^{5}) $ gilt.

Für die Spur eines Produktes von zwei Gamma-Matrizen gilt (weil die Spur zyklisch ist)

$ {\text{Spur}}\,\gamma ^{\mu }\,\gamma ^{\nu }={\frac {1}{2}}{\text{Spur}}(\,\gamma ^{\mu }\,\gamma ^{\nu }+\gamma ^{\nu }\,\gamma ^{\mu })={\frac {2\,\eta ^{\mu \nu }}{2}}{\text{Spur 1}}=4\,\eta ^{\mu \nu }\,. $

Die Spur von vier Gamma-Matrizen reduziert man mit der Dirac-Algebra auf die Spur von zwei.

$ {\begin{array}{rcl}2\,{\text{Spur}}\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }&=&{\text{Spur}}(\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }+\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }\,\gamma ^{\kappa })\\&=&{\text{Spur}}(\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }+\gamma ^{\lambda }\,\gamma ^{\kappa }\,\gamma ^{\mu }\,\gamma ^{\nu }\\&&\ \ \ \ -\gamma ^{\lambda }\,\gamma ^{\kappa }\,\gamma ^{\mu }\,\gamma ^{\nu }-\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\kappa }\,\gamma ^{\nu }\\&&\ \ \ \ +\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\kappa }\,\gamma ^{\nu }+\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }\,\gamma \kappa )\\&=&2\,\eta ^{\kappa \lambda }{\text{Spur}}(\gamma ^{\mu }\,\gamma ^{\nu })-2\,\eta ^{\kappa \mu }{\text{Spur}}(\gamma ^{\lambda }\,\gamma ^{\nu })+2\,\eta ^{\kappa \nu }{\text{Spur}}(\gamma ^{\lambda }\,\gamma ^{\mu })\end{array}} $

Daher gilt :

$ {\begin{array}{rcl}{\text{Spur}}\,\gamma ^{\kappa }\,\gamma ^{\lambda }\,\gamma ^{\mu }\,\gamma ^{\nu }&=&4\,(\eta ^{\kappa \lambda }\,\eta ^{\mu \nu }-\eta ^{\kappa \mu }\,\eta ^{\lambda \nu }+\eta ^{\kappa \nu }\,\eta ^{\lambda \mu })\end{array}} $

Falls also verschiedene Dirac-Matrizen in einem Produkt nicht paarweise auftauchen, verschwindet die Spur des Produktes. Daraus folgt unter anderem, dass die sechzehn Matrizen, die man als Produkt von Null bis vier verschiedenen Gamma-Matrizen erhält, linear unabhängig sind.

Dirac-Gleichung

Dirac führte die Gamma-Matrizen ein, um die Klein-Gordon-Gleichung, die eine Differentialgleichung zweiter Ordnung ist, in eine Gleichung erster Ordnung umzuwandeln.

In natürlichen Einheiten kann die Dirac Gleichung wie folgt geschrieben werden

$ (i\gamma ^{\mu }\partial _{\mu }-m)\psi =0 $

wobei $ \psi $ ein Dirac-Spinor ist.

Multpliziert man beide Seite mit $ -(i\gamma ^{\nu }\partial _{\nu }+m) $ erhält man

$ (\eta ^{\mu \nu }\partial _{\mu }\partial _{\nu }+m^{2})\psi =(\partial ^{2}+m^{2})\psi =0, $

also gerade die Klein-Gordon-Gleichung für ein Teilchen der Masse $ m $.

Zusammenhang zu Lorentz-Transformationen

Die sechs Matrizen

$ \Sigma ^{\mu \nu }={\frac {1}{4}}{\bigl (}\gamma ^{\mu }\gamma ^{\nu }-\gamma ^{\nu }\gamma ^{\mu }{\bigr )} $

bilden die Basis einer Lie-Algebra, die der Lie-Algebra der Lorentztransformationen isomorph ist. Sie erzeugen die zu Lorentztransformationen (die stetig mit der 1 zusammenhängen) gehörigen Transformationen der Spinoren $ \psi $.

Chiralität

Aus $ (\gamma ^{5})^{2}=1 $ und $ {\text{Spur}}\,\gamma ^{5}=0 $ folgt, dass die Matrizen

$ P_{L}={\frac {1-\gamma ^{5}}{2}}\,,\quad P_{R}={\frac {1+\gamma ^{5}}{2}} $

Projektoren sind,

$ (P_{L})^{2}=P_{L}\,,\,(P_{R})^{2}=P_{R}\,, $

die auf zueinander komplementäre, zweidimensionale Unterräume projizieren,

$ P_{L}\,P_{R}=0\,,\ {\text{Spur}}\,P_{L}={\text{Spur}}\,P_{R}=2\,,\quad P_{L}+P_{R}=1\,. $

Diese Unterräume unterscheiden Teilchen verschiedener Chiralität.

Weil $ \gamma ^{5} $ mit den Erzeugenden von Spinortransformationen vertauscht,

$ \gamma ^{5}\Sigma ^{\mu \nu }=\Sigma ^{\mu \nu }\gamma ^{5}\,, $

sind die Unterräume, auf die $ P_{L} $ und $ P_{R} $ projizieren, invariant unter den von $ \Sigma ^{\mu \nu } $ erzeugten Lorentztransformationen, mit anderen Worten: Die links- und rechtshändigen Anteile, $ \psi _{L}=P_{L}\psi $ und $ \psi _{R}=P_{R}\psi $, eines Spinors $ \psi $ transformieren getrennt voneinander.

Parität

Wegen $ \gamma ^{0}\gamma ^{5}\gamma ^{0}=-\gamma ^{5} $ ändert ein Term, der $ \gamma ^{5} $ enthält, unter der Paritätstransformation sein Vorzeichen, es macht also aus Skalaren Pseudoskalare und aus Vektoren Pseudovektoren.

Allgemein folgen Größen, die man aus $ {\overline {\psi }}=\psi ^{\dagger }A=\psi ^{\dagger }\gamma ^{0} $, Gamma-Matrizen und einem eventuell von $ \psi $ verschiedenen Spinor $ \chi $ zusammensetzt, einem Transformationsgesetz, das am Indexbild ablesbar ist. Es transformieren

  • $ {\overline {\psi }}\chi $ wie ein Skalar,
  • $ {\overline {\psi }}\gamma ^{\mu }\chi $ wie die Komponenten eines Vierervektors,
  • $ {\overline {\psi }}\Sigma ^{\mu \nu }\chi $ wie die Komponenten eines antisymmetrischen Tensors,
  • $ {\overline {\psi }}\gamma ^{\mu }\gamma ^{5}\chi $ wie die Komponenten eines axialen Vierervektors,
  • $ {\overline {\psi }}\gamma ^{5}\chi $ wie ein Pseudoskalar.

Feynman-Slash-Notation

Richard Feynman erfand die nach ihm benannte Slash-Notation (auch Feynman-Dolch oder Feynman-Dagger). In dieser Notation wird das Skalarprodukt eines Lorentzvektors mit dem Vektor der Gamma-Matrizen $ \textstyle \sum _{\mu =0}^{3}\,\gamma ^{\mu }A_{\mu } $ abgekürzt geschrieben als

$ A\!\!\!/\ {\stackrel {\mathrm {def} }{=}}\ \sum _{\mu =0}^{3}\gamma ^{\mu }A_{\mu } $.

Dadurch kann z. B. die Dirac-Gleichung sehr übersichtlich geschrieben werden als

$ {\Bigl (}i\partial \!\!\!/\ -{\frac {mc}{\hbar }}{\Bigr )}\,\psi (x)=0\ , $

oder in natürlichen Einheiten

$ {\Bigl (}i\partial \!\!\!/\ -m{\Bigr )}\,\psi (x)=0\ . $

Dirac-Darstellung

In einer geeigneten Basis haben die Gamma-Matrizen die auf Dirac zurückgehende Form (wir schreiben verschwindende Matrixelemente nicht aus)

$ {\begin{array}{c c}\gamma ^{0}={\begin{pmatrix}1&&&\\&1&&\\&&-1&\\&&&-1\end{pmatrix}}\,,&\gamma ^{1}={\begin{pmatrix}&&&1\\&&1&\\&-1&&\\-1&&&\end{pmatrix}}\,,\\\,&\,\\\gamma ^{2}={\begin{pmatrix}&&&-\mathrm {i} \\&&\mathrm {i} &\\&\mathrm {i} &&\\-\mathrm {i} &&&\end{pmatrix}}\,,&\gamma ^{3}={\begin{pmatrix}&&1&\\&&&-1\\-1&&&\\&1&&\end{pmatrix}}\,.\end{array}} $

Diese Matrizen lassen sich kompakter mit Hilfe der Pauli-Matrizen schreiben (jeder Eintrag steht hier für eine $ 2\times 2 $-Matrix):

$ \gamma ^{0}={\begin{pmatrix}1&\\&-1\end{pmatrix}}\,,\quad \gamma ^{i}={\begin{pmatrix}&\sigma ^{i}\\-\sigma ^{i}&\end{pmatrix}}\,,\;i\in \{1,2,3\}\,,\quad \gamma ^{5}={\begin{pmatrix}&1\\1&\end{pmatrix}}\,. $

Weyl-Darstellung

Die nach Hermann Weyl benannte Weyl-Darstellung heißt auch chirale Darstellung. In ihr ist $ \gamma ^{5} $ diagonal,

$ \gamma ^{5}={\begin{pmatrix}-1&\\&1\end{pmatrix}}\,,\quad P_{L}={\frac {1-\gamma ^{5}}{2}}={\begin{pmatrix}1&\\&0\end{pmatrix}}\,,\quad P_{R}={\frac {1+\gamma ^{5}}{2}}={\begin{pmatrix}0&\\&1\end{pmatrix}}\,. $

Im Vergleich zur Dirac-Darstellung werden $ \gamma ^{0} $ und $ \gamma ^{5} $ verändert, die räumlichen $ \gamma $-Matrizen bleiben unverändert:

$ \gamma ^{0}={\begin{pmatrix}&1\\1&\end{pmatrix}}\,,\quad \gamma ^{i}={\begin{pmatrix}&\sigma ^{i}\\-\sigma ^{i}&\end{pmatrix}}\,,\quad \gamma ^{5}={\begin{pmatrix}-1&\\&1\end{pmatrix}} $

Die Weyldarstellung ergibt sich durch einen unitären Basiswechsel aus der Dirac-Darstellung,

$ \gamma _{\text{Weyl}}^{\mu }=U\,\gamma _{\text{Dirac}}^{\mu }U^{-1}{\text{ mit }}U={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1&1\\-1&1\end{pmatrix}},\ U^{-1}=U^{\dagger }={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1&-1\\1&1\end{pmatrix}}\,. $

Spinortransformationen transformieren in der Weyl-Basis die ersten beiden und die letzten beiden Komponenten des Dirac-Spinors getrennt.

Die chirale Darstellung ist von besonderer Bedeutung in der Weyl-Gleichung, der masselosen Dirac-Gleichung.

Majorana-Darstellung

In der Majorana-Darstellung sind alle Gamma-Matrizen imaginär. Dann ist die Dirac-Gleichung ein reelles Differentialgleichungssystem,

$ {\begin{aligned}\gamma ^{0}&={\begin{pmatrix}&-\sigma ^{2}\\-\sigma ^{2}&\end{pmatrix}}\,,&\gamma ^{1}&={\begin{pmatrix}&\mathrm {i} \sigma ^{3}\\\mathrm {i} \sigma ^{3}&\end{pmatrix}}\,,&\\&\,&&\\\gamma ^{2}&={\begin{pmatrix}\mathrm {i} &\\&-\mathrm {i} \end{pmatrix}}\,,&\gamma ^{3}&={\begin{pmatrix}&-\mathrm {i} \sigma ^{1}\\-\mathrm {i} \sigma ^{1}&\end{pmatrix}}\,,&\gamma ^{5}&={\begin{pmatrix}&\mathrm {i} \\-\mathrm {i} &\end{pmatrix}}\,.\end{aligned}} $

Literatur

  • James Bjorken und Sidney Drell: Relativistische Quantenmechanik, BI-Wissenschaftsverlag, Mannheim, 1990, (BI-Hochschultaschenbuch Band 98), ISBN 3-411-00098-8
  • Michael Peskin and Daniel V. Schroeder: An Introduction to Quantum Field Theory, Addison-Wesley Publishing Co., New York, 1995, ISBN 0-201-50397-2
  • Josef-Maria Jauch and Fritz Rohrlich: The theory of photons and electrons, Addison-Wesley Publishing Co., New York, 1955
  • Ferdinando Gliozzi, Joel Sherk and David Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B122, 253-290, 1977. (Dirac-Algebra in höheren Dimensionen)

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.