Betaspektrum

Das Betaspektrum (auch β-Spektrum) repräsentiert die Energieverteilung der am Betazerfall beteiligten Teilchen.

Kontinuierliches Betaspektrum

Die beim Betazerfall frei werdende Energie wird auf die emittierten Teilchen Elektronen und Neutrino nach einem Wahrscheinlichkeitsgesetz verteilt, so dass das Betaspektrum ein kontinuierliches Spektrum ist. Es erstreckt sich von der Energie Null bis zur oberen Grenze, die durch die Umwandlungsenergie vermindert um die Rückstoßenergie des Tochterkerns gegeben ist.

Maximale Betaenergien:

  • Neutron 0,78 MeV-)
  • 11C 0,96 MeV (β+)
  • 37K 5,1 MeV (β+)
  • 20F 5,4 MeV (β-)

Diskretes Betaspektrum

Wenn bei einer Betaumwandlung der Ausgangskern in verschiedene Energiezustände des Folgekerns übergeht, so überlagern sich mehrere einfache Betaspektren zu einem komplexen Betaspektrum. Die angeregten Tochterkerne gehen durch die Aussendung von Gammastrahlung in den Grundzustand über oder sie geben ihre Energie auf ein Hüllenelektron ab, das der K-, L- oder einer höheren Schale angehört. Auf diese Weise entsteht ein diskretes Betaspektrum. Dieser Vorgang wird als Konversion bezeichnet.

Eine andere Deutung diskreter Betaspektren liegt darin, dass die Gammastrahlung, die beim Übergang des angeregten Tochterkerns in den Grundzustand entsteht und die Elektronenhülle des Atoms durchdringt, einen Photoeffekt auslöst, indem ein Elektron der Hülle die Energie des Gammaquants aufnimmt und mit einer Energie gleich der Gammaenergie vermindert um die Ablösearbeit des Elektrons das Atom verlässt. In vielen Fällen überlappen sich das kontinuierliche und das diskrete Betaspektrum.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.01.2021
Optik - Teilchenphysik
Aus Weiß wird (Extrem)-Ultraviolett
Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben eine neue Methode entwickelt, um die spektrale Breite von extrem-ultraviolettem (XUV) Licht zu modifizieren.
25.01.2021
Astrophysik - Teilchenphysik
Neue Möglichkeiten bei Suche nach kalter dunkler Materie
Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) am Antiprotonen-Entschleuniger des CERN hat neue Grenzen für die Masse von Axion-ähnlichen Teilchen – hypothetischen Teilchen, die Kandidaten für dunkle Materie sind – festgelegt und eingeschränkt, wie leicht sie sich in Photonen, die Teilchen des Lichts, verwandeln können.
25.01.2021
Exoplaneten
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Elektrodynamik - Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Elektrodynamik - Quantenoptik
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optik - Quantenoptik
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.