Zinkit

Zinkit
Zincite from Arizona.jpg
Zinkit, Kristallstufe aus Arizona
Chemische Formel

ZnO

Mineralklasse Oxide und Hydroxide
4.AB.20 (8. Auflage: IV/A.03) nach Strunz
04.02.02.01 nach Dana
Kristallsystem hexagonal
Kristallklasse; Symbol nach Hermann-Mauguin dihexagonal-pyramidal 6mm[1]
Farbe weiß, gelb, orange, rot
Strichfarbe orangegelb
Mohshärte 4
Dichte (g/cm3) 5,64 bis 5,68 [2]
Glanz starker Fettglanz, Diamantglanz
Transparenz durchsichtig bis durchscheinend
Bruch muschelig
Spaltbarkeit vollkommen nach {1010}
Habitus pyramidale Kristalle; körnige bis massige Aggregate
Kristalloptik
Brechungsindex ω = 2,013 ; ε = 2,029 [2]
Doppelbrechung
(optischer Charakter)
δ = 0.016 [2] ; einachsig positiv
Pleochroismus ε = dunkelrot ; ω = gelb [1]
Weitere Eigenschaften
Chemisches Verhalten empfindlich gegenüber Phosphor-, Salpeter-, Salz- und Schwefelsäure[3]

Zinkit, auch unter der veralteten, bergmännischen Bezeichnung Rotzinkerz bekannt, ist ein selten vorkommendes Mineral aus der Mineralklasse der Oxide (und Hydroxide). Es kristallisiert im hexagonalen Kristallsystem mit der chemischen Zusammensetzung ZnO und damit chemisch gesehen Zinkoxid. Natürlich vorkommender Zinkit enthält allerdings immer auch geringe Fremdbeimengungen von Mangan (bis 9 %) und/oder Eisen, so dass seine Formel je nach Quelle auch mit (Zn,Mn)O [4] oder (Zn,Mn2+,Fe2+)O [2] angegeben wird.

Zinkit entwickelt meist körnige bis massige Aggregate, selten auch pyramidale Kristalle von gelber bis orangeroter Farbe und fettigem bis diamantenem Glanz.

Etymologie und Geschichte

Erstmals beschrieben wurde Zinkit 1845 durch Wilhelm Ritter von Haidinger. Seinen Namen erhielt das Mineral aufgrund seines hohen Zinkanteils von über 73 %.

Klassifikation

In der alten Systematik der Minerale nach Strunz (8. Auflage) gehört der Zinkit noch zur Abteilung der „Oxide mit dem (ungefähren Stoffmengenverhältnis) Metall : Sauerstoff = 2 : 1 und 1 : 1“. Seit der neuen Systematik der Minerale nach Strunz (9. Auflage) ist diese Abteilung jedoch feiner unterteilt nach dem genauen Stoffmengenverhältnis und der Größe der beteiligten Kationen und der Zinkit findet sich jetzt entsprechend in der Unterabteilung der „Oxide mit dem Stoffmengenverhältnis Metall : Sauerstoff = 1 : 1 und 1 : 1,25 sowie nur kleinen bis mittelgroßen Kationen“.

Die strenger nach der Kristallstruktur sortierende Systematik der Minerale nach Dana ordnet den Zinkit zusammen mit Bromellit in die unbenannte Gruppe 04.02.02 der Abteilung der „Einfachen Oxide mit einer Kationenladung von 2+ (AO)“ ein.


Bildung und Fundorte

Zinkit entsteht durch die sogenannte Kontaktmetamorphose, das bedeutet durch eine Reihe von chemisch-physikalischen Prozessen, die eintreten, wenn heiße magmatische Schmelzen emporsteigen und durch die Hitzeeinwirkung eine Umwandlung der umliegenden Gesteine hervorrufen. Welche Gesteine bei diesem Prozess entstehen, hängt von der Zusammensetzung des Magmas und von der Art der betroffenen Gesteine ab.

Bisher wurde Zinkit an folgenden Fundorten aufgeschlossen: Western Australia in Australien; Lüttich (Plombières), Limburg (Dilsen-Stokkem) und Namur (Andenne) in Belgien; Oblast Chaskowo in Bulgarien; Hessen (Richelsdorf), Niedersachsen (Landkreis Goslar), Nordrhein-Westfalen (Aachen, Sauerland), Rheinland-Pfalz (Lahntal, Siegerland) und Sachsen (Erzgebirge) in Deutschland; Attika in Griechenland; Ost-Aserbaidschan im Iran; Ligurien, Lombardei, Sardinien und die Toskana in Italien; Buskerud in Norwegen; Katanga im Kongo; Gmünd in Kärnten, Annaberg (Niederösterreich) und Öblarn/Steiermark in Österreich; Ostsibirien in Russland; Dalarna in Schweden; Košice in der Slowakei; Böhmen in Tschechien; sowie Arizona, Kalifornien, Colorado, Nevada, New Jersey, New Mexico, Utah und Virginia.[5]

Morphologie

Synthetische Zinkitkristalle

Zinkit entwickelt in der Natur nur selten gut ausgebildete Kristalle mit bevorzugt wachsenden Kristallflächen $ (4 0 \bar 4 5) $, $ (1 0 \bar 1 3) $ und $ (1 0 \bar 1 1) $. Die Kristallkörper sind hemimorph, das heißt sie zeigen an den beiden Enden der c-Achse eine unterschiedliche Flächenentwicklung.

Synthetische Kristalle, die zuweilen als Nebenprodukt und Ofenbruch bei der Zinkproduktion anfallen, entwickeln dagegen bevorzugt die Flächen $ (1 0 \bar 1 0) $, $ \ (0 0 0 1) $, $ (0 0 0 \bar 1) $, $ (1 0 \bar 1 1) $ und $ (1 0 \bar 1 3) $. Zudem sind sie im Gegensatz zu ihren natürlichen Vorbildern meist farblos oder grünlichgelb bis honigbraun.

Kristallstruktur

Zinkit kristallisiert isotyp mit Wurtzit im hexagonalen Kristallsystem in der Raumgruppe P 63mc mit den Gitterparametern a = 3,249 Å und c = 5,207 Å [6] sowie zwei Formeleinheiten pro Elementarzelle [1].

Verwendung

Zinkit dient bei lokaler Anhäufung als Zinkerz. Besonders bekannt für ein reichliches Vorkommen an Zinkit sind die Zink- und Mangan-Minen von Sterling Hill in Ogdensburg und Mine Hill in Franklin (New Jersey). Selten werden Zinkite guter Qualität auch als Schmuckstein, vorwiegend zum Verkauf an Sammler verschliffen.

Siehe auch

Einzelnachweise

  1. 1,0 1,1 1,2 Webmineral - Zincite (engl.)
  2. 2,0 2,1 2,2 2,3 MinDat - Zincite (engl.)
  3. Th. Rohner: Handbuch zur Reinigung von Mineralien, Degen, April 2000 (PDF 1,25 MB; S. 48)
  4.  Stefan Weiß: Das große Lapis Mineralienverzeichnis. 5. Auflage. Christian Weise Verlag, München 2008, ISBN 3-921656-17-6.
  5. MinDat - Localities for Zincite
  6. American Mineralogist Crystal Structure Database - Zincite (engl., 1993)

Literatur

  •  Paul Ramdohr, Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. Auflage. Ferdinand Enke Verlag, 1978, ISBN 3-432-82986-8, S. 499.
  •  Walter Schumann: Edelsteine und Schmucksteine. 13. Auflage. BLV Verlags GmbH, 1976/1989, ISBN 3-405-16332-3, S. 222.

Weblinks

 Commons: Zinkit (Zincite) – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.