Supersäuren

Erweiterte Suche

(Weitergeleitet von Supersäure)

Als Supersäuren[1][2][3][4] werden in der Chemie Säuren bezeichnet, die stärker als konzentrierte (100-prozentige) Schwefelsäure (H2SO4: pKs-Wert = −3,9) sind.[5]

Alle Supersäuren haben somit einen pKs-Wert im negativen Bereich. Zur Quantifizierung der Säurestärke wird die Hammettsche Aciditätsfunktion $ H_{0} $ verwendet.[6]

Fluorsulfonsäure (HSO3F) ist beispielsweise mehrere tausendmal stärker als konzentrierte Schwefelsäure. Noch stärker sauer ist Fluor-Antimonsäure (HSbF6: pKS = −17), welche aus Antimonpentafluorid und wasserfreiem Fluorwasserstoff besteht. Werden diese beiden Säuren miteinander kombiniert, wird ihre Acidität um den Faktor 103 erhöht. Diese Mischung reagiert sogar mit Alkanen, weshalb sie auch magische Säure genannt und unter diesem Namen im Handel vertrieben wird. Auch organische Säuren können durch bestimmte Gruppen pKs-Werte < −11 erreichen. Ein Beispiel dafür ist Pentacyanocyclopentadien.

Im wässrigen Milieu lässt sich nicht nachweisen, dass eine Supersäure stärker als konzentrierte Schwefelsäure ist, da ein Protolysegrad >1 nur in Abwesenheit von Basen möglich ist und somit im Wasser nicht erreicht werden kann. Dieser Effekt wird nivellierender Effekt des Wassers genannt.

Die Bedeutung von Supersäuren in der Grundlagenforschung liegt darin, dass in supersauren Medien bestimmte Spezies, wie beispielsweise Carbokationen,[2][7][8] anorganische Polykationen[8][9] und Übergangsmetalle in niedrigen Oxidationsstufen[9][10][11]stabilisiert werden können. Auch die Erzeugung von Metall-Xenon-Verbindungen,[11][12][13] nichtklassischen Metallcarbonylen[2] und protonierten Fullerenen[14] gelang mithilfe von Supersäuren. Entscheidend ist dabei die geringe Nucleophilie und der große sterische Anspruch der Säurerestionen.

Durch ihre extrem hohe Acidität sind Supersäuren mitunter an Reaktionen beteiligt, die in der Chemie lange Zeit für ausgeschlossen gehalten wurden: Sie sind unter anderem in der Lage, die ausgesprochen reaktionsträgen Edelgase zu protonieren und Kohlenstoff-Atome mit formal fünf Bindungen (Carboniumionen) zu erzeugen.

Quellen

  1. N. F. Hall, J. B. Conant: A Study of superacid solutions. I. The use of chloranil in glacial acetic acid and the strength of certain weak bases., in: J. Am. Chem. Soc. 1927, 49, 3047–3061; doi:10.1021/ja01411a010.
  2. 2,0 2,1 2,2 C. Janiak, T. M. Klapötke, H.-J. Meyer, E. Riedel, Moderne Anorganische Chemie, 2. Aufl., de Gruyter, Berlin, 2004.
  3. J. E. Huheey, E. Keiter, R. L. Keiter, Anorganische Chemie. Prinzipien von Struktur und Reaktivität, 3. Aufl., de Gruyter, Berlin, 2003.
  4. A. F. Holleman, E. Wiberg, Lehrbuch der Anorganischen Chemie, 101. Aufl., de Gruyter, Berlin, 1995.
  5. R. J. Gillespie, T. E. Peel, E. A. Robinson: Hammett acidity function for some super acid systems. I. Systems H2SO4-SO3, H2SO4-HSO3F, H2SO4-HSO3Cl, and H2SO4-HB(HSO4)4, in: J. Am. Chem. Soc. 1971, 93, 5083–5087; doi:10.1021/ja00749a021.
  6. L. P. Hammett, A. J. Deyrup: A series of simple basic indicators. I. The acidity functions of mixtures of sulfuric acid and perchloric acids with water., in: J. Am. Chem. Soc. 1932, 54, 2721–2739; doi:10.1021/ja01346a015 .
  7. George A. Olah: My search for carbocations and their role in chemistry, Nobel Lecture in Chemistry, 1994. (PDF)
  8. 8,0 8,1 G. A. Olah, G. K. S. Prakash, J. Sommer, Superacids, John Wiley & Sons, New York, 1985.
  9. 9,0 9,1 T. A. O’Donnell, Superacids and Acidic Melts as Inorganic Reaction Media, VCH, Weinheim, 1993.
  10. C. G. Barraclough, R. W. Cockman, T. A. O’Donnell, W. S. J. Schofield: Electronic spectra of titanium(II), vanadium(II), and chromium(II) in anhydrous hydrogen fluoride, in: Inorg. Chem. 1982, 21, 2519–2521; doi:10.1021/ic00136a088.
  11. 11,0 11,1 I. C. Hwang, K. Seppelt: The Reduction of AuF3 in Super Acidic Solution, in: Z. anorg. allg. Chem. 2002, 628, 765–769; doi:10.1002/1521-3749(200205)628:4<765::AID-ZAAC765>3.0.CO;2-E.
  12. T. Drews, S. Seidel, K. Seppelt: Gold-Xenon-Komplexe, in: Angew. Chem. 2002, 114, 470–473; doi:10.1002/1521-3757(20020201)114:3<470::AID-ANGE470>3.0.CO;2-U.
  13. S. Seidel, K. Seppelt: ''Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe42+(Sb2F11-)2, in: Science 2000, 290, 117–118; doi:10.1126/science.290.5489.117.
  14. C. A. Reed, K. C. Kim, R. D. Bolskar, L. J. Mueller: Taming Superacids: Stabilization of the Fullerene Cations HC60+ and C60·+, in: Science 2000, 289, 101–104; doi:10.1126/science.289.5476.101.

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.01.2022
Satelliten | Raumfahrt | Astrophysik
James Webb Weltraumteleskop am Ziel
Die Wissenschaft kann möglicherweise bald erforschen, wie das Universum seinen Anfang nahm, denn das neue Weltraumteleskop James Webb hat seine Endposition erreicht.
17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.