Skaleninvarianz

Erweiterte Suche

Skaleninvarianz bzw. Selbstähnlichkeit der Koch-Kurve

Skaleninvarianz bzw. Skalenunabhängigkeit ist ein Begriff aus der Mathematik, der Kernphysik und der Statistischen Physik bzw. Statistischen Mechanik.

Skaleninvarianz beschreibt die Eigenschaft eines Zustands, Vorgangs, Verhältnisses oder einer Situation, bei dem bzw. der auch bei Veränderung der Betrachtungsgrößen (Skalierung) die Eigenart oder Charakteristik inklusive seiner Eckwerte weitestgehend exakt gleich bleibt, so dass ein Zustand der Universalität gegeben ist.


Mathematik

Eine von der Variablen $ \!\ x $ abhängige Funktion $ \!\ f(x) $ heißt skaleninvariant, wenn die wesentlichen Eigenschaften der Funktion sich unter einer Reskalierung $ \!\ x\to ax $ nicht ändern. In der Regel versteht man darunter, dass sich $ \!\ f $ nur um einen Faktor (der von $ a $ abhängen kann) ändert:

$ \!\ f(ax)=C(a)f(x)\,. $

Das bedeutet beispielsweise, dass wichtige Eigenschaften der Funktion – wie Nullstellen, Extrema, Wendepunkte oder Pole – nicht davon abhängen, welche Skala man verwendet. Beispiele skaleninvarianter Funktionen sind die Monome $ \!\ x^{p} $.

Die Verallgemeinerung für Funktionen mehrerer Variablen ist offensichtlich: Die Funktion $ \!\ f(x_{1},x_{2},\dots ,x_{n}) $ heißt skaleninvariant, wenn $ \!\ f(ax_{1},ax_{2},\dots ,ax_{n})=C(a)f(x_{1},x_{2},\dots ,x_{n})\,. $ Beispiele sind homogene Polynome, die p-Normen, die Mahalanobis-Distanz und der Korrelationskoeffizient.

Auch Netze, deren Verlinkungsgrad keiner Skala folgt, bezeichnet man als skaleninvariante oder skalenfreie Netze.


Kernphysik

Die räumliche Ausdehnung von Quarks in Nukleonen wird durch die sogenannte Strukturfunktion beschrieben. Aus der Invarianz dieser Strukturfunktion gegenüber dem 4er-Impulsübertrag wird postuliert, dass die Quarks als Bausteine der Nukleonen keine räumliche Ausdehnung haben, also punktförmig sind.

Statistische Physik

Systeme mit Phasenübergängen zweiter Art, d. h.: Übergänge mit kontinuierlichem Verlauf des Ordnungsparameters, zeigen am kritischen Punkt ein skaleninvariantes Verhalten der Eigenschaft, die durch den Ordnungsparameter beschrieben wird. Ein Beispiel ist der Übergang vom unmagnetischen (paramagnetischen) Verhalten zum ferromagnetischen Verhalten eines durch das Ising-Modell beschreibbaren Materials bei einer kritischen Temperatur. Bei genau dieser Temperatur ist die Verteilung von einheitlich magnetisierten Bereichen (Spin-Clustern) räumlich skaleninvariant, d. h., es gibt Cluster auf allen Größenskalen. Der Ordnungsparameter, in diesem Beispiel die Magnetisierung, ist bei der kritischen Temperatur noch Null, da es Cluster unterschiedlicher Magnetisierungsrichtungen gibt. Anschaulich: Unabhängig davon, wie nah man an das System herangeht, d. h., wie stark man es vergrößert, wird man immer das gleiche (magnetische) Bild sehen.

Siehe auch

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.