Pulfrich-Refraktometer

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
Pulfrich-Refraktometer (Holzstich 1897)
Schematische Darstellung des Strahlengangs beim Pulfrich-Refraktometer

Ein Pulfrich-Refraktometer ist eine Bauform eines Refraktometers, die nach Carl Pulfrich benannt ist. Es besteht aus einem quaderförmigen Glaskörper mit bekanntem Brechungsindex, einem Fernrohr und einer Möglichkeit den Winkel zwischen Quader und Fernrohr abzulesen.

Funktion

An der Oberseite wird der Glasquader mit dem Prüfling in Kontakt gebracht. Die Grenzfläche wird mit leicht konvergentem Licht von der Seite beleuchtet. Der Teil des Lichtbündels, der von der Seite des Glaskörpers auf die Grenzfläche fällt, wird durch Totalreflexion im Glaskörper weitergeleitet. Der Teil des Lichts, der von der Seite des Prüflings (Brechungsindex $ n<n_G $) auf die Grenzfläche fällt, wird gebrochen und transmittiert. Aufgrund der Totalreflexion entsteht ein dunkler Bereich zwischen den transmittierten und den totalreflektierten Strahlen. Anschließend werden alle Strahlen an der Seitenfläche gebrochen. Der Winkel zwischen der Grenzflächennormalen und dem Strahl, der gerade noch gebrochen wird, wird mit dem Fernrohr bestimmt. Dieser Grenzwinkel der Totalreflexion ist in der Abbildung durch $ \theta $ gegeben. Wird nun das Fernrohr auf den Winkel $ \varphi $ eingestellt, so manifestiert sich der Grenzübergang durch einen scharfen Hell-Dunkel-Übergang. Der Grenzwinkel ist gegeben durch:

$ \sin\theta=\frac{n}{n_G} $

An der Seitenfläche wird dieser Strahl gebrochen. Der Einfallswinkel zum Lot ist dabei $ 90^{\circ}-\theta $ für den Austrittswinkel $ \varphi $ (zum Lot gemessen) gilt nach dem Brechungsgesetz

$ \frac{\sin(90^{\circ}-\theta)}{\sin\varphi}=\frac{1}{n_G} \Rightarrow \cos\theta=\frac{\sin\varphi}{n_G} $

Aus der trigonometrischen Identität $ \sin^2\theta+\cos^2\theta=1 $ folgt nun:

$ n=\sqrt{n^2_G-\sin^2\varphi} $

Anwendungsbeispiel

Beispielsweise lässt sich mit einem Pulfrich-Refraktometer der Brechungsindex von Ethanol bestimmen. Verwendet man ein Pulfrich-Refraktometer aus Quarzglas mit einem Brechungsindex $ n_G = 1.46 $, so ergibt die Messung des Winkels am Fernrohr $ \varphi = 31.83^\circ $. Mit obiger Formel ergibt sich:

$ n = \sqrt{(1.46)^2-\sin^2(31.83^\circ)} = 1.361 $[1]

Einzelnachweise

  1. Thieme Chemistry (Hrsg.): Eintrag zu Ethanol im Römpp Online. Version 3.29. Georg Thieme Verlag, Stuttgart 2012, abgerufen am 11. November 2011.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.