Pseudopotential

Erweiterte Suche
Vergleich einer Wellenfunktion im Coulomb Potential des Nucleus (blau) mit einer im Pseudopotential (rot). Die echte und die Pseudo-Wellenfunktion und die Potentiale selbst stimmen oberhalb des Cutoff-Radius $ r_{c} $ überein.

Der Pseudopotential-Formalismus in der Quantenmechanik ist ein Ansatz, um die rechenintensiven kernnahen (Nicht-Valenz-) Elektronen eines Atoms bzw. Ions und den Atomkern durch ein effektives Potential anzunähern. Normalerweise haben die kernnahen Elektronen die höchste Energie, was eine kurze Wellenlänge bedeutet, wodurch mit einer hohen Ortsauflösung gerechnet werden muss. Durch geschickte Wahl eines empirischen Potentials lässt sich der Aufwand zum Lösen der Schrödingergleichung massiv reduzieren. Die Wellenfunktion der Valenzelektronen ist dann orthogonal zu allen Kernzuständen.

Das Pseudopotential wurde zuerst 1934 von Hans Hellmann eingeführt.[1] Die Methode fand weitverbreitete Anwendung in Bandstrukturrechnungen der Festkörperphysik, wobei James C. Phillips Ende der 1950er Jahre ein Pionier war (später mit Marvin Cohen, Volker Heine und anderen).

Näherungen

  1. Ein Ein-Elektron Bild wird benutzt, um Elektronen in Kern- und Valenz-Satz aufzuteilen.
  2. Frozen-Core Approximation (eingefrorener Kern Näherung): Die Ein-Elektron Zustände des Kernanteils sind konstant.
  3. Die Small-Core Appr. (kleiner Kern Näherung) nimmt an, dass die Kern- und Valenzzustände keine signifikante Überlappung haben, und damit für das Austausch-Korrelations-Potenzial( siehe DFT(QM)) gilt: $ E_{xc}(n_{kern}+n_{valenz})=E_{xc}(n_{kern})+E_{xc}(n_{valenz}) $; Dies stimmt nicht immer, und dann kann die non-linear core corrections Technik (Louie et al., 1982) zum Verbessern der Ergebnisse verwendet werden.

Arten

Es werden zwei Klassen von Pseudopotentialen (PP) verwendet: Norm-conserving PP und Ultrasoft PP.

Norm-conserving (Norm-Erhaltend) PP: Außerhalb eines bestimmten Radius (cutoff-radius) sind die PP-Wellenfunktionen identisch mit den echten (all-electron) WF.
z. B. BHS-PP, Bachelet, Hamann, Schlüter (Hamann et al., 1982)

Ultrasoft PP wurden von David Vanderbilt eingeführt [Phys. Rev. B 41,7892, (1990)] und haben den Vorteil, dass die Wellenfunktionen noch „glatter“ sind, also für die gleiche Genauigkeit eine deutlich geringere Anzahl an ebenen Wellen zur Beschreibung benötigen, und somit die Rechenzeit noch geringer ist. Ein Nachteil dieser Potentiale ist aber, dass die Atomorbitale kein Orthonormalsystem mehr bilden.

Beide Arten von Pseudopotentialen sind „nicht-lokal“, das heißt, dass das Potential von der Drehimpulsquantenzahl $ l $ abhängt.

Literatur

  • Walter A. Harrison (1966): Pseudopotentials in the theory of metals, Frontiers in Physics, University of Virginia
  • David Brust, Bernie Alder (Herausgeber) (1968) The Pseudopotential Method and the Single-Particle Electronic Excitation Spectra of Crystals, Methods in Computational Physics 8: 33–61
  • Volker Heine (1970), The Pseudopotential Concept, Solid State Physics 24: 1–36,
  • Warren E. Pickett (April 1989): Pseudopotential methods in condensed matter applications, Computer Physics reports 9 (3): 115–197

Siehe auch

Einzelnachweise

  1. Hans Hellmann A New Approximation Method in the Problem of Many Electrons, Journal of Chemical Physics (Karpow‐Institute for Physical Chemistry, Moscow), Band 3, 1935, S. 61, Hans Hellmann, W. Kassatotschkin Metallic Binding According to the Combined Approximation Procedure, Journal of Chemical Physics (Karpow‐Institute for Physical Chemistry, Moscow), Band 4, 1936, S. 324

Die cosmos-indirekt.de:News der letzten Tage

22.06.2022
Teilchenphysik
Lange gesuchtes Teilchen aus vier Neutronen entdeckt
Ein internationales Forschungsteam hat nach 60 Jahren vergeblicher Suche erstmals einen neutralen Kern entdeckt – das Tetra-Neutron.
22.06.2022
Festkörperphysik
Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
15.06.2022
Exoplaneten
Zwei neue Super-Erden in der Nachbarschaft
Unsere Sonne zählt im Umkreis von zehn Parsec (33 Lichtjahre) über 400 Sterne und eine stetig wachsende Zahl an Exoplaneten zu ihren direkten Nachbarn.
15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
13.06.2022
Quantenphysik
Photonenzwillinge ungleicher Herkunft
Identische Lichtteilchen (Photonen) sind wichtig für viele Technologien, die auf der Quantenphysik beruhen.
10.06.2022
Kometen und Asteroiden | Sonnensysteme
Blick in die Kinderstube unseres Sonnensystems
Asteroiden sind Überbleibsel aus der Kinderstube unseres Sonnensystems und mit rund 4,6 Milliarden Jahren ungefähr so alt wie das Sonnensystem selbst.
07.06.2022
Galaxien | Sterne
Das Ende der kosmischen Dämmerung
Eine Gruppe von Astronomen hat das Ende der Epoche der Reionisation auf etwa 1,1 Milliarden Jahre nach dem Urknall genau bestimmt.