Neutronenmikroskop

Erweiterte Suche

Ein Neutronenmikroskop ist ein Mikroskop, das nicht Licht sondern Neutronen nutzt, um vergrößerte Abbildungen von Gegenständen zu erzeugen. Das Konzept des Neutronenmikroskops wurde Anfang der 1980er Jahre entworfen. Damals wurden erst die technischen Voraussetzungen für die Ablenkung und Speicherung von Neutronen geschaffen, die für den Aufbau eines solchen Mikroskops notwendig sind. Auch zurzeit (2007) befindet sich die Entwicklung erst im Experimentierstadium.

Neutronen bieten gegenüber derzeit eingesetzten Methoden wie dem Elektronenmikroskop einige einzigartige Vorteile. So wechselwirken Neutronen sehr stark mit Wasserstoff. Zusammen mit der Eigenschaft leicht organisches Material zu durchdringen, könnte dies gerade in der Biologie, wo die zu untersuchenden Proben hohe Anteile von Wasser und Kohlenwasserstoffe aufweisen, neue Untersuchungsmethoden eröffnen.

Aufbau

Ähnlich wie bei herkömmlichen Mikroskopen versucht man durch (Neutronen-)Linsen einen Strahl aus Neutronen auf der Probe zu fokussieren und die Wechselwirkungen mit der Probe zu detektieren. Da ein Neutron völlig anders mit der restlichen Materie wechselwirkt als Photonen oder Elektronen, werden dafür beim Neutronenmikroskop zum Teil grundverschiedene Techniken und Materialsysteme eingesetzt.

So dürfen die eingesetzten Neutronen nur eine geringe thermische Energie besitzen (ca. 2 × 10−7 Elektronenvolt) – im englischen auch ultra-cold neutrons (UCN) genannt. Derartige Neutronen zeigen unter flachen Einfallswinkeln Totalreflexion an Oberflächen, außerdem lassen sie sich in magnetischen Fallen ausreichend lange speichern[1]; ausreichend bedeutet hierbei eine Dauer im Bereich der Halbwertszeit der Neutronen. Als freies Teilchen zerfällt das Neutron mit einer Halbwertszeit von 611 Sekunden in ein Proton, ein Elektron und ein Neutrino.

Die Auflösung eines Lichtmikroskops wird durch die Wellenlänge der benutzten elektromagnetischen Strahlung begrenzt. Wie bei Elektronen kann auch Neutronen eine sogenannte Materiewellenlänge zugeordnet werden. Aufgrund der deutlich höheren Masse ist die Wellenlänge einer solchen Materiewelle bei Neutronen deutlich niedriger als bei Elektronen. Während bei optischen Mikroskopen (max. 200 Nanometer) die Auflösung tatsächlich nahezu die von der Lichtwellenlänge gesetzte physikalische Grenze erreicht, verschlechtern bei Neutronenmikroskopen die Abbildungsfehler der Bauteile die nutzbare Auflösung (theoretisch 1 Nanometer); die Vergrößerung derzeitiger Versuchsanlagen ist noch sehr gering (22,5fach[2]).

Literatur

  •  P. Herrmann, K.-A. Steinhauser, R. Gähler, A. Steyerl, W. Mampe: Neutron Microscope. In: Physical Review Letters. 54, Nr. 18, 1985, S. 1969–1972, doi:10.1103/PhysRevLett.54.1969.
  •  M. R. Eskildsen, P. L. Gammel, E. D. Isaacs, C. Detlefs, K. Mortensen, D. J. Bishop: Compound refractive optics for the imaging and focusing of low-energy neutrons. In: Nature. 391, Nr. 6667, 1998, S. 563–566, doi:10.1038/35333.

Einzelnachweise

  1.  P. R Huffman, C. R Brome, J. S Butterworth, K. J Coakley, M. S Dewey, S. N Dzhosyuk, R. Golub, G. L Greene, K. Habicht, S. K Lamoreaux, C. E. H Mattoni, D. N McKinsey, F. E Wietfeldt, J. M Doyle: Magnetic Trapping of Neutrons. In: nucl-ex/0001003. 2000, arXiv:nucl-ex/0001003.
  2.  J. T. Cremer, M. A. Piestrup, H. Park, C. K. Gary, R. H. Pantell, C. J. Glinka, J. G. Barker: Imaging hydrogenous materials with a neutron microscope. In: Applied Physics Letters. 87, Nr. 16, 2005, doi:10.1063/1.2089172.

Weblinks

  • „Sehen“ mit Neutronen. Max-Planck-Gesellschaft, 2009, abgerufen am 14. April 2009 (Beschreibung des Neutronenmikroskopie-Verfahrens, mit Animation).

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

18.06.2021
Quantenphysik
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.