Massenwirkungsgesetz

Das Massenwirkungsgesetz (oder kurz „MWG“) beschreibt das Verhältnis der Aktivitäten der Produkte und der Edukte einer (chemischen) Reaktion im chemischen Gleichgewicht. Das Verhältnis ist konstant. Es gilt für jede Reaktion, die reversibel ist und bereits ihren Gleichgewichtszustand erreicht hat. Die resultierende Konstante hat unter gegebenen Bedingungen einen festen, für die betrachtete Reaktion spezifischen Wert, der einzig über die äußeren Bedingungen (z. B. die Temperatur) beeinflusst werden kann. Die thermodynamische Erklärung hierfür ist, dass es immer einen energetisch niedrigsten und damit günstigsten Zustand gibt. Im chemischen und damit thermodynamischen Gleichgewicht kommt die Reaktion nicht zum Stillstand: sowohl die Hin- wie die Rückreaktion halten sich die Waage, das heißt, sie verlaufen gleich schnell.

Exakte Formulierung

Die allgemeine Formulierung lautet:

$ K = \prod_{i=1}^n a_i^{{\nu}_i} $

Hierbei sind :

Π Produkt
a Aktivitäten
ν Stöchiometrischer Koeffizient (ist für Edukte < 0 und die Produkte > 0)
K Gleichgewichtskonstante

Die Gleichgewichtskonstante K gibt die Lage des Gleichgewichts an, beschreibt also, auf wie viele Produktmoleküle wie viele Eduktmoleküle kommen.

Statt mit der Aktivität wird das Massenwirkungsgesetz häufig mit der Konzentration (in Lösung), dem Partialdruck (Reaktionen in der Gasphase) oder dem Stoffmengenanteil aufgestellt, wodurch sich im Allgemeinen der Zahlenwert von K ändert. Das Massenwirkungsgesetz kann auch durch eine Kombination dieser Größen (Druck, Konzentration ...) ausgedrückt werden. Zur Unterscheidung fügt man im Index von K die Angabe der Größe, mithilfe derer K berechnet wurde (Kc für Konzentration, Kp für den Partialdruck, Kx für den Stoffmengenanteil), hinzu. Die verschiedenen Ks lassen sich durch einfache Beziehungen ineinander umrechnen. Für Reaktionen in verdünnter Lösung wird normalerweise die Konzentration benutzt. Für konzentriertere Lösungen kann der Aktivitätskoeffizient jedoch stark von 1 abweichen, so dass diese Näherung mit Vorsicht zu verwenden ist. Das Massenwirkungsgesetz wird zum Beispiel für die Reaktion:

$ \mathrm{a\,A + b\,B \ \rightleftharpoons \ c\,C + d\,D} $

wie folgt formuliert:

$ K_c = \frac{c^\mathrm{c}(\mathrm{C}) \cdot c^\mathrm{d}(\mathrm{D})}{c^\mathrm{a}(\mathrm{A}) \cdot c^\mathrm{b}(\mathrm{B})} $

Cato Maximilian Guldberg (links) und Peter Waage im Jahr 1891

Dabei sind c(A), c(B), c(C), c(D) die molaren Gleichgewichtskonzentrationen der Edukte bzw. Produkte. Sie werden auch häufig als [A], [B], [C] und [D] notiert. Im Exponenten finden sich die stöchiometrischen Koeffizienten, also die Anzahl der Teilchen dieser Spezies, die für einen Formelumsatz benötigt werden.

Eine exakte Herleitung des Gesetzes, die unabhängig vom Reaktionsweg ist, erfolgt in der Thermodynamik mit Hilfe des chemischen Potentials.

Das Massenwirkungsgesetz wurde zuerst im Jahre 1864 von den norwegischen Chemikern Cato Maximilian Guldberg und Peter Waage formuliert, es ist jedoch unter Guldberg 1867 angegeben. Sie hatten das Massenwirkungsgesetz noch aus der so genannten „aktiven Masse“ hergeleitet (ein veralteter Ausdruck für die Aktivität) statt aus der Konzentration.

Verständnis des MWG

Hier einige der zu beachtenden Punkte:

  • Das MWG gilt für jede einzelne Teilreaktion. Häufig erscheint es in der Summe, als bestehe eine Reaktion aus nur einem Reaktionsschritt, setzt sich aber tatsächlich aus vielen Einzelschritten mit mehr Spezies, als denen, die in der Reaktionsgleichung auftauchen, zusammen. Diese müssen auch berücksichtigt werden (z. B. alle Kettenreaktionen).
  • Das MWG beschreibt nur den thermodynamisch günstigsten Zustand. Faktoren wie hohe Aktivierungsenergien können dazu führen, dass der tatsächliche Gleichgewichtszustand nicht erreicht wird (Diamant ist unter Normalbedingung nur eine metastabile Modifikation von Kohlenstoff. Die Aktivierungsenergie für eine Umlagerung zu Graphit ist jedoch so hoch, dass die Reaktion im Allgemeinen nicht stattfindet).
  • Alle verwendeten Aktivitäten sind Gleichgewichtsaktivitäten, deren Bestimmung häufig schwierig durchzuführen ist.
  • Bei einer gegebenen Reaktion ist die Gleichgewichtskonstante K von der Temperatur und dem Druck abhängig.

Das MWG in der Halbleiterelektronik

Das Massenwirkungsgesetz besagt, dass in Halbleitern im thermischen Gleichgewicht das Produkt aus den Ladungsträgerdichten aus Valenz- und Leitungsband konstant ist.

$ n_0p_0 = {n_i}^2 $

mit der intrinsischen Ladungsträgerdichte $ n_i $ und den Dichten der freien Elektronen und Löcher im thermischen Gleichgewicht $ n_0,p_0 $. Das Massenwirkungsgesetz gilt in intrinsischen, d.h. undotierten, sowie in dotierten Halbleitern.[1]

Verwandte Größen und Prinzipien

KL Löslichkeitsprodukt
KS Säurekonstante (auch Säure-Dissoziationskonstante)
KB Basenkonstante (auch Basen-Dissoziationskonstante)
KW Ionenprodukt des Wassers
pH-Wert
pOH-Wert
Prinzip vom kleinsten Zwang (Henry Le Chatelier)
Puffer

Literatur

Weblinks

Einzelnachweise

  1. Stefan Goßner, Grundlagen der Elektronik. Halbleiter, Bauelemente und Schaltungen, 8. ergänzte Aufl., Shaker, 2011. Gesamttext.pdf

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

06.05.2021
Astrophysik - Relativitätstheorie
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Physikdidaktik - Quantenphysik
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat.
06.05.2021
Festkörperphysik - Quantenphysik
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
28.04.2021
Galaxien - Sterne
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.