Manganit

Erweiterte Suche

Manganit
Manganite-180085.jpg
Manganit-Kristallstufe aus Ilfeld (Nordhausen) im Harz (Thüringen)
Andere Namen
  • Braunmanganerz
  • Braunstein
  • Glanzmanganerz
Chemische Formel

γ-MnO(OH)[1]

Mineralklasse Oxide und Hydroxide
4.FD.15 (8. Auflage: IV/F.06) nach Strunz
06.01.03.01 nach Dana
Kristallsystem monoklin
Kristallklasse; Symbol nach Hermann-Mauguin monoklin-prismatisch; 2/m[2]
Raumgruppe (Raumgruppen-Nr.) P21/c (Raumgruppen-Nr. 14)
Farbe Schwarz bis Schwarzgrau
Strichfarbe Rotbraun bis Schwarz
Mohshärte 4
Dichte (g/cm3) gemessen: 4,29 bis 4,34 ; berechnet: 4,38
Glanz Metallglanz, matt
Transparenz undurchsichtig
Bruch uneben bis muschelig
Spaltbarkeit vollkommen nach {110}, gut nach {001}
Habitus pseudo-orthorhombische, prismatische, entlang der c-Achse gestreifte Kristalle; nadelige, körnige bis massige Aggregate und Konkretionen
Häufige Kristallflächen {001}, {h0l}
Zwillingsbildung Kontakt- und Durchdringungszwillinge nach {011}, lamellar nach {100}
Kristalloptik
Brechungsindex nα = 2,250(2) ; nβ = 2,250(2) ; nγ = 2,530(2)[3]
Doppelbrechung
(optischer Charakter)
δ = 0,280[3] ; zweiachsig positiv
Weitere Eigenschaften
Ähnliche Minerale Enargit, Stibnit, Zinkenit

Manganit, auch als Braunmanganerz, Glanzmanganerz oder kurz Braunstein bekannt (nicht zu verwechseln mit der Mineralgruppe der Braunsteine), ist ein häufig vorkommendes Mineral aus der Mineralklasse der „Oxide und Hydroxide“. Es kristallisiert im monoklinen Kristallsystem mit der chemischen Zusammensetzung γ-MnO(OH)[1], besteht also zu gleichen Teilen aus Mangan in der kubisch-flächenzentrierten Modifikation, Sauerstoff und Hydroxidionen (OH).

Manganit entwickelt meist prismatische und entlang der c-Achse gestreifte Kristalle und knie- oder kreuzförmige Kristallzwillinge, aber auch nadelige und körnige bis massige Mineral-Aggregate bzw. Konkretionen. Auch Pseudomorphosen nach Calcit sind bekannt.[4]

Manganit ist üblicherweise undurchsichtig und von grauschwarzer bis schwarzer Farbe bei rotbrauner bis schwarzer Strichfarbe. In dünnsten Schichten und Splittern kann er allerdings rötlich durchscheinend sein[4]. Auf sichtbaren Kristallflächen zeigt sich starker, gelegentlich auch bunt irisierender Metallglanz, Bruchflächen und massige Aggregate sind dagegen matt.

Besondere Eigenschaften

"Würfeliger" Manganit mit starker Streifung und irisierendem Glanz aus Atikokan, Hutchinson, Ontario, Kanada

Das im Manganit enthaltene Kristallwasser entweicht erst bei über 200 °C. In konzentrierter Salzsäure löst sich das Mineral auf, wobei Chlor abscheidet. Vor dem Lötrohr zeigt sich in der Boraxperle die Manganreaktion.[4]

Mit der Zeit geht Manganit durch Verwitterung in Pyrolusit über, wobei die sowieso schon oft vorhandene Streifung immer löchriger wird.

Etymologie und Geschichte

Erstmals entdeckt wurde Manganit in Ilfeld im Landkreis Nordhausen (Thüringen) im Südharz und beschrieben 1827 durch Wilhelm Ritter von Haidinger, der das Mineral in Anlehnung an seinen Mangangehalt benannte.

Klassifikation

In der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Manganit zur Mineralklasse der „Oxide und Hydroxide“ und dort zur Abteilung der „Hydroxide und oxidischen Hydrate (wasserhaltige Oxide mit Schichtstruktur)“, wo er zusammen mit Akaganeit, Böhmit, Diaspor, Feitknechtit, Feroxyhyt, Goethit, Groutit, Lepidokrokit, Schwertmannit und Tsumgallit die „Akaganeit-Gruppe“ mit der System-Nr. IV/F.06 bildete.

Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz'schen Mineralsystematik ordnet den Manganit ebenfalls in die Klasse der „Oxide und Hydroxide“, dort allerdings in die neue Abteilung der „Hydoxide (ohne V oder U)“ ein. Diese Abteilung ist allerdings weiter unterteilt nach der möglichen Anwesenheit von OH-Gruppen und Kristallwasser sowie der Kristallstruktur, so dass das Mineral entsprechend seiner Zusammensetzung und seines Aufbaus in der Unterabteilung „Hydroxide mit OH, ohne H2O; Ketten aus kantenverknüpften Oktaedern“ zu finden ist, wo es als einziges Mitglied die unbenannte Gruppe 4.FD.15 bildet.

Auch die Systematik der Minerale nach Dana ordnet den Manganit in die Klasse der „Oxide und Hydroxide“ und dort in die Abteilung der „Hydroxide und hydroxyhaltigen Oxide“ ein. Hier ist er als einziges Mitglied der unbenannten Gruppe 06.01.03 innerhalb der Unterabteilung der „Hydroxide und hydroxyhaltigen Oxide mit der Formel: X3+O OH“ zu finden.

Modifikationen und Varietäten

Die Verbindung γ-MnO(OH) ist trimorph und kommt in der Natur neben dem monoklinen Manganit noch als trigonal kristallisierender Feitknechtit und als orthorhombisch kristallisierender Groutit vor.

Bildung und Fundorte

Mit Rhodochrosit verwachsener Manganit aus der N'Chwaning Mines bei Kuruman in der südafrikanischen Kalahari.
Prismatischer Manganit auf Baryt aus Ilfeld, Nordhausen, Harz

Manganit bildet sich durch hydrothermale Abscheidung bei relativ niedriger Temperatur (zwischen 200 und 100 °C), aber auch sekundär in manganhaltigen Erz-Gängen. Selten entsteht er auch durch sedimentäre Ablagerung oder metamorphe Umwandlung in manganreichen Gesteinen. Begleitminerale sind unter anderen Braunit, Baryt, Calcit, Goethit, Hausmannit, Pyrolusit und Siderit.

Weltweit konnte Manganit bisher (Stand: 2011) an rund 650 Fundorten nachgewiesen werden. Bekannt ist vor allem seine Typlokalität Ilfeld und weitere Fundorte im Harz durch Drusenfunde mit bis zu 4 cm großen Kristallen. Daneben konnte das Mineral in Thüringen noch bei Kamsdorf und Langewiesen sowie an mehreren Orten im Schwarzwald in Baden-Württemberg; bei Lichtenberg und Hartkoppe (Sailauf) in Bayern, im Landkreis Gießen, bei Steeden, Ober-Rosbach und Wetzlar in Hessen; Peine in Niedersachsen; Sauerland und Siegerland in Nordrhein-Westfalen; in mehreren Regionen von Rheinland-Pfalz; bei Wadern im Saarland; Mansfeld in Sachsen-Anhalt und bei Schneeberg in Sachsen gefunden werden.

In Österreich trat Manganit vor allem in mehreren Regionen von Kärnten, der Steiermark und Oberösterreich sowie bei Baunzen in der niederösterreichischen Gemeinde Purkersdorf auf. In der Schweiz wurde das Mineral in den Gemeinden Tinizong-Rona und Ausserferrera im Kanton Graubünden, in Thayngen in Schaffhausen und in Turtmann im Wallis gefunden.

Weitere Fundorte sind Ägypten, Argentinien, Australien, Belgien, Brasilien, Bulgarien, Chile, China, Finnland, Frankreich, Gabun, Georgien, Ghana, Griechenland, Indien, Iran, Irland, Italien, Japan, Kanada, Kuba, Madagaskar, Marokko, Mexiko, Namibia, Neukaledonien, Neuseeland, Norwegen, Pakistan, Polen, Portugal, Ruanda, Rumänien, Russland, Schweden, Slowakei, Spanien, Südafrika, Südkorea, Tschechien, Türkei, Ukraine, Ungarn, Usbekistan, das Vereinigte Königreich (Großbritannien) und die Vereinigten Staaten von Amerika (USA).[5]

Kristallstruktur

Manganit kristallisiert monoklin in der Raumgruppe P21/c (Raumgruppen-Nr. 14) mit den Gitterparametern a = 5,304 Å; b = 5,277 Å; c = 5,304 Å und β = 114,38°[6] sowie 4 Formeleinheiten pro Elementarzelle[7].

Verwendung

Manganit ist mit einem Mangangehalt von bis zu 62,5 % ein wichtiges Manganerz.

Siehe auch

Einzelnachweise

  1. 1,0 1,1  Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. 9. Auflage. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 236.
  2. Webmineral - Manganite (englisch)
  3. 3,0 3,1 Mindat - Manganite (englisch)
  4. 4,0 4,1 4,2  Paul Ramdohr, Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. Auflage. Ferdinand Enke Verlag, Stuttgart 1978, ISBN 3-432-82986-8, S. 555-556.
  5. Mindat - Localities for Manganite
  6. http://rruff.geo.arizona.edu/AMS/result.php?mineral=Manganite American Mineralogist Crystal Structure Database - Manganite] (T. Kohler, T. Armbruster, E. Libowitzky, 1997)
  7. Mineralienatlas:Manganit

Literatur

  •  Petr Korbel, Milan Novák: Mineralien Enzyklopädie. Nebel Verlag GmbH, Eggolsheim 2002, ISBN 3-89555-076-0, S. 110.

Weblinks

 Commons: Manganite – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
03.06.2021
Supernovae - Astrophysik - Teilchenphysik
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.