Interkalation (Chemie)

Interkalation von kleinen Metall-Atomen zwischen Graphitebenen.

Unter Interkalation (von lateinisch intercalare = einschieben) im chemischen Sinn versteht man die Einlagerung von Molekülen, Ionen (selten auch Atomen) in chemische Verbindungen, wobei diese ihre Struktur während des Einlagerungsprozesses nicht wesentlich verändern.

Anorganische Chemie

In der Anorganischen Chemie bezeichnet Interkalation die Einlagerung von Atomen, Ionen oder kleinen Molekülen zwischen die Kristallgitterebenen von Schichtkristallen, zum Beispiel die Interkalation von Alkalimetallen in Graphit (siehe Bild). Die dabei entstehenden Verbindungen werden als Interkalationskomplexe bezeichnet.

Damit eine Kristallstruktur Interkalationsverbindungen ausbilden kann, müssen die Wechselwirkungskräfte innerhalb der Schichten groß, zwischen benachbarten Schichten klein sein. Zwischen dem Wirtsgitter und den Gastkomponenten müssen starke Wechselwirkungen möglich sein. Um eine Interkalationsreaktion einzuleiten, ist die Solvatation von Zwischenschichtkationen besonders geeignet. Es hängt sowohl von den chemischen Eigenschaften der einzulagernden Komponente, aber auch von der chemischen Natur des Wirtsgitters ab, wie die Einlagerung abläuft. Häufig spielen neben reinen Van-der-Waals-Wechselwirkungen auch Lewis-Säure-Base-Wechselwirkungen eine Rolle.

Die Wirtsgitter können in ihrer chemischen Natur stark variiert werden; von den quasi-metallischen Schichten in Graphit oder in den Übergangsmetallsulfiden NbS2 oder TaS2, zu den halbleitenden Systemen wie TiS2 und SnS2 und zu nichtleitenden Verbindungen wie Tonminerale (z. B. Kaolinit).

Viele Schichtengitter tragen von Natur aus negative Schichtladungen, z. B. die glimmerartigen Schichtsilikate. Elektrisch neutrale Wirtsgitter sind eher selten; beispielsweise der oben erwähnte Kaolinit. Einige „neutrale “Wirtsgitter sind erst durch die Anwendung starker Reduktionsmittel in der Lage, Interkalationskomplexe zu bilden. In manchen Fällen kann auch die Verwendung nicht stöchiometrischer Präparate die Einlagerung ermöglichen. Die Nichtstöchiometrie wird dabei durch Reduktionsmittel oder elektrochemische Reduktion erreicht. Methoden hierzu sind die Cyclovoltammetrie, die Elektrogravimetrie und die Galvanostatik.

Praktische und technische Anwendung finden diese Art von Reaktionen unter anderem in

  • Akkumulatoren und Batterien
  • Boden-, Umwelt- und Geochemie (Resorptions- und Speicherverhalten von Böden)
  • Industrielle Herstellung und Konfektionierung von Medikamenten, Düngemitteln, Pflanzenschutz

Biochemie

Interkalation von Molekülen in die DNA.

Von Interkalation in die Desoxyribonukleinsäure (DNA) spricht man, wenn sich bestimmte Moleküle, die vollständig oder teilweise planar sind, in die Doppelhelix der DNA zwischen benachbarte Basenpaare einschieben. Durch diese Einlagerung wird die Replikation und Transkription der DNA gestört. Während des Replikationsvorganges kommt es zu einer Rastermutation. Die Interkalation wird deshalb für die mutagene Wirkung vieler Vertreter dieser Stoffklasse verantwortlich gemacht, und auch die chemotherapeutische Wirkung von Antibiotika beziehungsweise Zytostatika wie Actinomycin oder Anthracycline, wie Daunorubicin, wird unter anderem auf die Interkalation zurückgeführt. Zu den Verbindungen mit interkalativen Eigenschaften gehören neben den erwähnten Zytostatika zum Beispiel auch polyaromatische Kohlenwasserstoffe sowie Farbstoffe des Phenanthridin-Typs, wie Ethidiumbromid, oder des Proflavin-Typs (Falbe und Regitz, 1992; Mutschler 1996). Auch Indirubin-Derivate interkalieren in die DNA.

Literatur

  • J. Falbe (Hrsg.), M. Regitz (Hrsg.): Römpp Chemie Lexikon. 9. Aufl. Georg Thieme Verlag, Stuttgart 1992, ISBN 3-13-107830-8.
  • E. Mutschler: Arzneimittelwirkungen. 8. Aufl. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 2001, ISBN 3-8047-1763-2.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.03.2021
Sonnensysteme - Teilchenphysik
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
01.03.2021
Akustik - Optik - Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.