Stöchiometrie

(Weitergeleitet von Stöchiometrisch)

Die Stöchiometrie (von gr. στοιχειον stoicheion „Grundstoff“ und μέτρον metron „Maß“) ist ein grundlegendes mathematisches Hilfsmittel in der Chemie. Mit ihrer Hilfe werden aus der qualitativen Kenntnis der Reaktanten und Produkte einer Reaktion die tatsächlichen Mengenverhältnisse (Reaktionsgleichung) und Stoffmengen berechnet. In der chemischen Umgangssprache bezeichnet Stöchiometrie nicht die (meist triviale) Berechnung, sondern deren Ergebnis. Die praktische Durchführung einer Reaktion erfolgt häufig „unstöchiometrisch“, das heißt, dass mindestens ein Reaktant im Überschuss eingesetzt wird und daher teilweise erhalten bleibt.

Grundlagen

Die Berechnungsgrundlagen der modernen Stöchiometrie basieren (auch historisch betrachtet) auf folgenden Gesetzen:

Die Gesetze der Stöchiometrie leiten sich also aus dem Wissen über den Aufbau der Materie aus Atomen und Molekülen her.

Begriffe

Stöchiometrische Bilanz

Bei den stöchiometrischen Rechnungen geht es darum, die Menge an Ausgangsstoff, Reaktant, zu berechnen, die bei einer chemischen Reaktion eingesetzt werden muss. Die Berechnung lässt sich umkehren, so dass man bei Kenntnis der Menge an Reaktant(en) die Menge an Produkt(en) bestimmen kann.

Um jede beliebige Reaktion bilanzieren zu können, wird zu einer allgemeineren Symbolschreibweise übergegangen. Für eine einfache chemische Reaktion lautet sie beispielsweise:

$ \left| \nu_1 \right| A_1 + \left| \nu_2 \right| A_2 = \left| \nu_3 \right| A_3 + \left| \nu_4 \right| A_4 $
  • wobei $ \nu_{i} $ die stöchiometrischen Verhältniszahlen (auch stöchiometrische Koeffizienten genannt) sind; in der deutschen Norm DIN 32642 "Symbolische Beschreibung chemischer Reaktionen" wird hierfür die Benennung "stöchiometrische Zahl" empfohlen.

Da sich für eine Reaktion unterschiedliche Reaktionsgleichungen aufstellen lassen

$ \mathrm{\ CO + \tfrac {1}{2} \ O_2 \longrightarrow \ CO_2} $   oder   $ \mathrm{\ 2 \ CO + \ O_2 \longrightarrow \ 2 \ CO_2} $,

müssen vor der Bilanzierung die stöchiometrischen Verhältniszahlen festgelegt werden. Dabei gilt:

  • Reaktanten bekommen immer eine negative stöchiometrische Verhältniszahl
  • Produkte eine positive stöchiometrische Verhältniszahl
  • und Begleitstoffe (Stoffe, die nicht an der Reaktion teilnehmen) bekommen eine stöchiometrische Verhältniszahl von 0

Bei der Reaktion verändern sich die Mengenanteile (genauer der Stoffmengenanteil (n)) der Reaktanten in dem Maße, wie die stöchiometrischen Verhältniszahlen es vorgeben. Die stöchiometrische Bilanz für die Reaktanten i und k ergibt sich als:

$ {n_{i,0} - n_i \over -\nu_i} = {n_{k,0} - n_k \over -\nu_k} $

Durch einfache Umformung erhält man für den Satzbetrieb

$ {n_{i,0} - n_i \over n_{k,0} - n_k} = {\nu_i \over \nu_k} $

und entsprechend für den Fließbetrieb

$ {\dot n_{i,0} - \dot n_i \over \dot n_{k,0} - \dot n_k} = {\nu_i \over \nu_k} $

Umsatz (Xi)

Dies ist ein Begriff aus der chemischen Reaktionstechnik und beschreibt, wie viel Reaktant bei einer Reaktion reagiert. Mit dem Umsatz(grad) wird angegeben, welcher Anteil eines Ausgangsstoffes beim Verlassen des Reaktors in andere chemische Stoffe durch chemische Reaktion umgewandelt wurde. Etwas mathematischer ausgedrückt: Der Umsatz ist der Anteil der umgesetzten Menge einer Komponente i bezogen auf die eingesetzte Menge ni,0

$ X_\mathrm{i} ={ n_\mathrm{i,0} - n_\mathrm{i} \over n_\mathrm{i,0} } $
  • wobei ni die noch vorhandene Menge der Komponente i ist

Sind mehrere Ausgangsstoffe beteiligt, so wird der Umsatzgrad per Konvention für denjenigen Stoff angegeben, der limitierend ist bzw. im Unterschuss vorliegt.

Ausbeute

Die Ausbeute ist ein Begriff aus der chemischen Reaktionstechnik. Die Ausbeute ist die Menge eines Produktes P bezogen auf die Leitkomponente (k). Die Leitkomponente ist per Konvention derjenige Stoff, der in einer geringeren Menge vorliegt als es der Stöchiometrie der Reaktion entspricht.

Für einen Satzbetrieb gilt:
$ Y_P = {n_P - n_{P,0} \over n_{k,0}} \cdot {\left| v_k \right| \over v_P} $
Für einen Durchflussbetrieb gilt entsprechend:
$ Y_P = {\dot n_P - \dot n_{P,0} \over \dot n_{k,0}} \cdot {\left| v_k \right| \over v_P} $

Selektivität

Selektivität ist ein Begriff aus der chemischen Reaktionstechnik. Die Selektivität einer chemischen Umsetzung oder eines Reaktors gibt an, welcher Anteil des insgesamt umgesetzten Reaktants unter Berücksichtigung der Stöchiometrie in das gewünschte Zielprodukt umgesetzt wurde. In der Regel setzen sich nicht alle Moleküle zu dem gewünschten Produkt um, da durch Folge oder Konkurrenzreaktionen andere Produkte entstehen können.

$ S_p = {\mathrm{gebildete\;Menge}\,(k) \over \mathrm{umgesetzte\;Menge}\,(i)} = {(n_p - n_{p,0}) \cdot \left|v_k \right| \over (n_{k,0} - n_k) \cdot v_p} = {Y_p \over X_i} $

Umsatz, Ausbeute und Selektivität

Kombiniert man die Definitionen für Umsatz, Ausbeute und Selektivität miteinander, erhält man einen einfachen Zusammenhang der drei Größen:

$ Y_P = X_i \cdot S_P $

Das bedeutet, dass wenn es nur eine mögliche Reaktion gibt, ist S=1 und die Ausbeute Y gleich dem Umsatz X.

Literatur

  • Werner Kullbach: Mengenberechnungen in der Chemie. Verlag Chemie, Weinheim 1980, ISBN 3-527-25869-8
  • Eberhard Aust, Burkhard Bittner: Stöchiometrie - Chemisches Rechnen, CICERO-Verlag, Pegnitz, 4. Auflage, 2011, ISBN 978-3-926292-47-6
  • Uwe Hillebrand: Stöchiometrie, Eine Einführung in die Grundlagen mit Beispielen und Übungsaufgaben, 2. Aufl., Springer-Verlag, Berlin Heidelberg 2009, ISBN 978-3-642-00459-9
  •  Eintrag: stoichiometry. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.S06026.

Weblinks

Wikibooks Wikibooks: Formelsammlung Chemie/ Stöchiometrie – Lern- und Lehrmaterialien

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.