Hubbard-Modell

Das Hubbard-Modell ist eine grobe Näherungsmethode der Festkörperphysik. Es liefert eine Beschreibung für das Verhalten von Elektronen in einem als starr angenommenen Gitter. Dabei werden die abstoßenden Coulomb-Kräfte nur für Elektronen, die sich am gleichen Gitterplatz aufhalten, berücksichtigt. Der kinetische Elektronenenergieanteil wird durch ein Überlapp-Integral $ t $ modelliert, das aus dem Tight-Binding-Modell kommt. Es ist nach dem britischen Physiker John Hubbard benannt.

Der Hamilton-Operator für das Hubbard-Modell ist

$ H = U \sum_i c^\dagger_{i\uparrow} c_{i\uparrow} c^\dagger_{i\downarrow} c_{i\downarrow} - t \sum_{\langle ij \rangle , \sigma} \left( c^\dagger_{i \sigma} c_{j \sigma} + c^\dagger_{j \sigma} c_{i \sigma} \right) $.

Dabei steht

  • die Summe über $ i $ für die Summation über alle Gitterplätze,
  • die Summe über $ \langle ij \rangle $ für die Summe über alle Paare benachbarter Gitterplätze,
  • die Summe über $ \sigma $ für die Summation über beide Spinrichtungen $ \uparrow $ und $ \downarrow $,
  • und $ c^\dagger_{i,\sigma} $ und $ c_{i,\sigma} $ für die fermionischen Erzeugungs- und Vernichtungsoperatoren eines Elektrons am Gitterplatz $ i $ mit Spinrichtung $ \sigma $.

$ U $ legt die Stärke der Coulomb-Abstoßung fest, $ t $ wird aus dem Überlappen von Wellenfunktionen an benachbarten Gitterplätzen berechnet.

Die Summe des Coulombterms ermittelt die doppelt besetzten Gitterplätze. Daher lässt sich der Wert von $ U $ am jeweiligen Ort $ \mathbf{x_i} $ durch folgendes Integral ermitteln:

$ U(\mathbf{x_i})=\int d^3\mathbf{r_1} \int d^3\mathbf{r_2} \,\,\left| \Psi (\mathbf{r_1 - x_i}) \right|^2 \frac{e^2}{\left|\mathbf{r_1 - r_2} \right|} \left| \Psi (\mathbf{r_2 - x_i}) \right|^2 $

In der Summe für das Hüpfen der Elektronen bedeutet $ \langle ij \rangle $, dass ausschließlich über benachbarte Gitterplätze summiert wird. Außerdem wird durch die Operatorenkonstellation automatisch das Pauli-Prinzip beachtet.

Das Hubbard-Modell ist das einfachste Modell, an dem man das Zusammenspiel von kinetischer Energie, Coulomb-Abstoßung, Pauli-Prinzip und Bandstruktur studieren kann. Trotz seiner einfachen Struktur ist es jedoch bisher nicht gelungen, die exakte Lösung dieses Modells, außer in den Grenzfällen von einer und unendlich vielen Dimensionen, zu finden.

Es wird z.B. im Zusammenhang mit

  • Eigenschaften von Elektronen, die relativ stark lokalisiert sind;
  • Bandmagnetismus (Fe, Co, Ni, ...);
  • Metall-Isolator-Übergang;
  • Hochtemperatur-Supraleitung

diskutiert.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
18.02.2021
Quantenphysik - Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
18.02.2021
Quantenoptik
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
18.02.2021
Planeten
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.