Bodenstein-Zahl

Die Bodenstein-Zahl (auch kurz Bo, benannt nach Max Bodenstein) ist eine dimensionslose Kennzahl aus der Reaktionstechnik, die das Verhältnis der konvektiv zugeführten zu den durch Diffusion zugeführten Molen beschreibt. Damit charakterisiert die Bodenstein-Zahl die Rückvermischung innerhalb eines Systems und ermöglicht somit Aussagen darüber, ob und wie stark sich Volumenelemente oder Stoffe innerhalb eines Reaktors durch die herrschenden Strömungen vermischen. Definiert ist sie als das Verhältnis des Konvektionsstroms zum Dispersionsstrom. Sie ist ein Bestandteil des Dispersionsmodelles und wird daher auch als dimensionsloser Dispersionskoeffizient bezeichnet.

Mathematisch erhält man für die Bodenstein-Zahl zwei idealisierte Grenzfälle, die sich praktisch jedoch nicht vollständig erreichen lassen:

  • wäre die Bodenstein-Zahl gleich Null, hätte man den Zustand einer totalen Rückvermischung erreicht, die idealerweise in einem kontinuierlich betriebenen Rührkessel-Reaktor erwünscht ist
  • wäre die Bodenstein-Zahl unendlich groß, gäbe es keine Rückvermischung sondern nur eine kontinuierliche Durchströmung, die in einem idealen Strömungsrohr herrscht

Durch Regulierung der Strömungsgeschwindigkeit innerhalb eines Reaktors kann die Bodenstein-Zahl auf einen zuvor berechneten, gewünschten Wert eingestellt werden. Somit kann die innerhalb des jeweiligen Reaktors gewünschte Rückvermischung der Stoffkomponenten erreicht werden.

Formel zur Bestimmung der Bodenstein-Zahl

$ Bo=\frac{u \cdot L}{D_{ax}} $


Hierin sind:

u: die Strömungsgeschwindigkeit
L: die Länge des Reaktors
$ D_{ax} $: der axiale Dispersionskoeffizient

Die Bodensteinzahl kann experimentell aus der Verweilzeitverteilung gewonnen werden. Bei Annahme eines offenen Systems gilt:

$ \sigma_\theta^2=\frac{\sigma^2}{\tau^2}=\frac{2}{Bo}+\frac{8}{Bo^2} $

mit

$ \sigma_\theta $: dimensionslose Varianz
$ \sigma $: Varianz um mittlere Verweilzeit
$ \tau $: hydrodynamische Verweilzeit

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.