Atomökonomie

Erweiterte Suche

Atomökonomie und chemische Umwandlungen

Die Atomökonomie (auch Atomeffizienz) ist der prozentuale Anteil der in einer chemischen Reaktion von den Edukten in die Produkte überführten Atome.

Beispiele

  • Ein Beispiel für eine völlig atomeffiziente Reaktion ist die [4+2]-Cycloaddition (Diels-Alder-Reaktion), bei der alle Atome der Edukte im Produkt wieder zu finden sind.
  • Die Cope-Umlagerung ist eine atomeffiziente Reaktion, bei der keine Abfallstoffe anfallen. Das gilt analog auch für die Claisen-Umlagerung.
  • Die Fries-Verschiebung läuft atomeffizient ab, es fallen keine niedermolekularen Abfallstoffe an.
  • Die Addition von Brom an ein Alken unter Bildung eines Dibromalkans ist eine atomeffiziente Reaktion; hingegen ist die katalytische Bromierung von Benzol weniger atomeffizient, da neben Brombenzol ein Equivalent Bromwasserstoff entsteht, vom Verbleib des Katalysators ganz abgesehen.
  • Die Hydroformylierung ist eine atomeffiziente Reaktion, wenn die Regioselektivität hoch ist.
  • Bei der industriellen Phenolsynthese nach dem Cumolhydroperoxidverfahren fällt Aceton als Kuppelprodukt in stöchiometrischer Menge an, die Atomeffizienz ist mittelmäßig.
  • Eine wenig atomeffiziente Reaktion ist die Grignard-Reaktion, bei der erhebliche Salzabfälle entstehen.
  • Die Herstellung von Thionamiden aus Amiden mit Lawessons Reagenz oder Phosphorpentasulfid ist wenig atomeffizient, die Abfallmengen sind in der Regel erheblich.
  • Die Gabriel-Synthese ist ein Beispiel für eine Synthese mit ausgeprägt schlechter Atomökonomie; selbst bei hohen Ausbeuten entstehen wesentlich größere Mengen an Abfall als vom gewünschten Produkt (primäres Amin).
  • Bei einer Racematspaltung kann bestenfalls eine Atomökonomie von 50 % erreicht werden, es sei denn, das ungewünschte Enantiomer racemisiert fortwährend oder es kann extern racemisiert und recycliert werden.

Bedeutung und Anwendung

Für die Ermittlung der Atomökonomie mehrstufiger Synthesen ist eine praktikable Methode beschrieben worden.[1]

In der chemischen Industrie spielt die Atomökonomie eine immer wichtigere Rolle. Moderne Synthesen werden so konzipiert, dass sie mit hoher Atomeffizienz ablaufen, das ist zugleich fast immer das wirtschaftlichste Verfahren. Dadurch wird die Entsorgung unerwünschter oft in stöchiometrischen Mengen entstehender Nebenprodukte minimiert oder gar gänzlich überflüssig.

Große Chemieunternehmen, z. B. die BASF AG (Stichwort: Verbundstandort), praktizieren seit Jahrzehnten erfolgreich in großem Stil angewandte Atomökonomie. Dabei wird nicht nur die maximale Effizienz eines Produktionsprozesses betrachtet, sondern die Effizienz eines komplexen Standortes als Einheit. Vermeintliche Abfallstoffe des Herstellungsprozesses A können wertvolle Edukte für den Produktionsprozess B darstellen.

Dieses Konzept wird auch unter energetischen Gesichtspunkten verfolgt. Die bei einer exothermen chemischen Reaktion frei werdende Energie wird in einem anderen Betrieb als Heizenergie genutzt.

Systematische Ansätze zu einer „nachhaltigen“ Chemie und der Einbeziehung weiterer Faktoren, die über die Atomökonomie hinausgehen, sind in der Literatur beschrieben.[2] Dabei geht es um die Verwendung nachwachsender Rohstoffe, die Einbeziehung von Ökobilanzen, Sozialbilanzen, Produktlebenscyclen etc.

Literatur

  • Barry Trost: The atom economy – a search for synthetic efficiency, in: Science 1991, 254, S. 1471–1477, doi:10.1126/science.1962206.
  • Manfred Schubert (Herausgeber): Abproduktarme und abproduktfreie Technologie, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1. Auflage, 1987, ISBN 3-342-00093-7.

Einzelnachweise

  1. Marco Eissen, Radoslaw Mazur, Heinz-Georg Quebbemann und Karl-Heinz Pennemann: Atom Economy and Yield of Synthesis Sequences, Helvetica Chimica Acta 87 (2004) 524−535.
  2. (a) Marco Eissen, Jürgen O. Metzger: Environmental Performance Metrics for Daily Use in Synthetic Chemistry, Chemistry a European Journal 8 (2002), 3580 - 3585; (b) Marco Eissen, Jürgen O. Metzger, Eberhard Schmidt, Uwe Schneidewind: 10 Jahre nach „Rio“ – Konzepte zum Beitrag der Chemie zu einer nachhaltigen Entwicklung, Angewandte Chemie 114 (2002) 402-425.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

18.06.2021
Quantenphysik
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.