Thermometer

Erweiterte Suche

Das größte Thermometer in Deutschland am Turm des Deutschen Museums in München, 1930

Ein Thermometer (altgriechisch: θερμός thermós „warm“ und μέτρον métronMaß, Maßstab“) ist ein Messgerät zur Bestimmung der Temperatur.

Viele Thermometer basieren auf der Temperaturabhängigkeit der Ausdehnung von Flüssigkeiten, Gasen oder Festkörpern, deren Ausdehnungskoeffizient bekannt ist. Andere nutzen den Zusammenhang der elektrischen Leitfähigkeit mit der Temperatur. Pyrometer hingegen bestimmen die Temperatur anhand der Wärmestrahlung. Es können jedoch auch andere physikalische Effekte, die eine Temperaturabhängigkeit besitzen, zur Konstruktion eines Thermometers verwendet werden.

Jedes Thermometer besteht aus einem Temperatur-Sensor (beispielsweise ein Stoff, der auf geeignete Weise Wärmeausdehnung zeigt) und einer Anzeigevorrichtung (beispielsweise die Skala auf dem Fieberthermometer).

Thermometer werden anhand von festen Temperaturpunkten, wie den Tripel- oder Schmelzpunkten bestimmter Materialien, oder anhand eines geeichten Referenzthermometers kalibriert.

Geschichte

Die Entwicklung des Thermometers lässt sich sicher nicht der Erfindung einer einzelnen Person zuordnen.[1] Vielmehr waren zahlreiche wissenschaftliche Erkenntnisse notwendig, die zu unserem heutigen Temperaturbegriff führten und die Einführung einer Temperaturskala, sowie deren technische Umsetzung ermöglichten.

Der Zusammenhang der Wärmeausdehnung von Luft war bereits in der Antike bekannt (Philon von Byzanz, Heron von Alexandria). Für das Thermoskop wurde ein Glasbehälter in Wasser getaucht und je nach Temperatur stieg oder fiel der Wasserstand. Im zweiten Jahrhundert nach Christus führte Galen acht „Grade der Hitze und Kälte“ ein, die er mit einem Gemisch aus Eis und kochendem Wasser definiert.

In einer Biographie über Galileo Galilei zitiert Giambattista Nelli Briefe zwischen Galilio und seinem Schüler Giovanni Francesco Sagredo aus den Jahren 1612 und 1615, in dem von einem Instrument zum Messen der Wärme die Rede ist. Der Arzt Santorio Santorio aus Padua, der mit Galileo in Kontakt war, nutzte dessen wissenschaftliche Erkenntnisse medizinisch und verwendete sowohl Thermoskope zur Temperaturmessung, als auch Pendel zum Pulsmessen.[2] Santorio hat zwei Referenzpunkte (Schnee und Kerzenflamme) zur Eichung des Thermoskops verwendet. Ebenfalls um diese Zeit bezogen sich der Holländer Cornelius Drebbel und der Engländer Robert Fludd auf den Versuchsaufbau von Heron, aber auch auf ein Manuskript aus dem 12. Jahrhundert.

Alle bis dahin verwendeten Thermoskope nutzten nicht die Wärmeausdehnung der Flüssigkeit, sondern die der Luft. Sie glichen im Grunde einem Barometer und waren daher insbesondere auch vom Luftdruck abhängig, wie spätestens 1643/44 durch Evangelista Torricelli bekannt war. Ferdinando II. de’ Medici, Großherzog von Toscana, ließ 1654 das erste Thermometer herstellen, das die Ausdehnung von Alkohol in einem geschlossenen Glasrohr ausnutzte.

1724 schlug Daniel Gabriel Fahrenheit die nach ihm benannte Temperaturskala vor, die den kältesten Punkt einer Kältemischung als 0 °F, den Schmelzpunkt von Wasser als 32 °F und die Körpertemperatur des Menschen als 96 °F definierte. Anders Celsius legte seine Skala 1742 anhand von Schmelz- und Siedepunkt von Wasser fest, allerdings andersherum als die heute nach ihm benannte Skala.

1859 formulierte Gustav Robert Kirchhoff das nach ihm benannte Strahlungsgesetz, das den Grundstein für auf Wärmestrahlung basierende Thermometer legte.

Arten von Thermometern

Flüssigkeitsthermometer
Digitales Thermometer

Berührungsthermometer

Berührungsthermometer erfordern einen Wärmekontakt zum Messobjekt. Messfehler treten hier vor allem aufgrund unzureichendem Wärmekontakt zum Messobjekt bzw. zu großer Wärmeableitung durch das Thermometer auf.

  • Ausdehnungsthermometer (Flüssigkeitsthermometer, Bimetallthermometer)
  • Fieberthermometer zum Messen der Körpertemperatur, früher meist Quecksilberthermometer, heute zunehmend elektronische Thermometer oder berührungslose Pyrometer
  • Bimetallthermometer (Auswertung unterschiedlicher Ausdehnungskoeffizienten zweier aufeinander angebrachter unterschiedlicher Metallplättchen)
  • elektronische Thermometer mit Halbleiter-Temperatursensor (z. B. mit Kaltleiter-Widerstand oder Sensor-Schaltkreisen)
  • Widerstandsthermometer mit Platin (Pt100) oder Silizium
  • Thermometer mit Thermoelementen (NiCr/Ni, Pt/PtRh, Fe/Konstantan usw.)
  • Gasthermometer (Auswertung einer Druckmessung)
  • Dampfdruckthermometer (Zusammenhang zwischen Dampfdruck einer Flüssigkeit und der absoluten Temperatur - Clausius-Clapeyron-Gleichung)
  • Flüssigkristall-Thermometer (z. B. als Weinflaschenthermometer) beruhen auf den thermochromen Eigenschaften von Flüssigkristallen
  • Heizungs-Thermostatventile und Thermostat-Mischbatterien arbeiten mit einem wachsgefüllten Dehnstoffelement.
Berührungslose Temperaturmessung mit Niedertemperatur-Pyrometer (Laser-Messfleckmarkierung)

Berührungslos messende Thermometer

Berührungslos messende Thermometer nutzen die Eigenschaft, dass Objekte eine der Eigentemperatur proportionale, elektromagnetische Eigenstrahlung absenden. Ein Teil dieser ausgesandten Strahlung ist die Infrarotstrahlung, die zur berührungslosen Temperaturmessung genutzt wird.[3]

  • Ramanthermometer, basierend auf der Ramanspektroskopie (siehe auch Faseroptische Temperaturmessung), benutzen einen frequenzstabilen Messstrahl und werten dessen Rückstreuung aus. Sie können ortsaufgelöst entlang einer Dimension messen.
  • Strahlungsthermometer (Pyrometer) messen anhand der Wärmestrahlung des Messobjektes und wurden in der Vergangenheit in folgende Kategorien unterteilt:
    • Niedertemperaturpyrometer (ca. -20…200 °C), Messwellenlänge um 5…15 µm
    • Hochtemperaturpyrometer (ca. 400…3000 °C), Messwellenlängen 1…1,5…µm
Mittlerweile werden die Strahlungsthermometer (Pyrometer) jedoch wie folgt unterteilt:
  • Langwellig messende Pyrometer (-50…1600 °C), Messwellenlänge: 3,43…14 µm
  • Kurzwellig messende Pyrometer (50…3000 °C), Messwellenlänge: 0,8…2,7 µm

Ein Sonderfall der Strahlungsthermometer sind die Thermografie-Kameras. Sie liefern zweidimensionale Temperaturprofile (Thermobilder) die in die im Maschinenbau, der Automatisierung, im F&E-Bereich, in der Medizin, der Sicherheits- / Überwachungstechnik und im Bauwesen verwendet werden. Für die Darstellung der durch Thermografie erzeugten Bilder dient in der Regel eine Software. Die oft verwendete Falschfarbendarstellung ordnet jeder Farbe eine Temperatur zu. Im Bild ist dazu häufig ein Farbkeil mit einer Temperaturskala eingeblendet.

Sonstige

Ein auf Schwerkraft und temperaturabhängiger Dichte einer Flüssigkeit basierendes Thermometer, das Galileo-Thermometer, wurde nicht von Galileo Galilei erfunden, sondern nur nach ihm benannt.

Kalibrierung

Für die Kalibrierung von Thermometern gibt es den internationalen Standard ITS-90. Anhand dieses Standards kalibriert die Physikalisch-Technische Bundesanstalt (bzw. der Deutsche Kalibrierdienst oder in Großbritannien die UKAS - United Kingdom Accreditaion Service) Platin-Thermometer, die dann als Referenz für Hersteller hergenommen werden. Dabei werden die folgenden Temperaturpunkte verwendet:[4]

Punkt Material Temperatur Anmerkung
Absoluter Nullpunkt 0K = -273,15 °C Thermodynamische Temperatur
Tripelpunkt Wasser +0,0100 °C Thermodynamische Temperatur
Tripelpunkt Argon -189,3442 °C Eichpunkt nach ITS-90
Tripelpunkt Quecksilber -38,8344 °C Eichpunkt nach ITS-90
Schmelzpunkt Gallium +29,7646 °C Eichpunkt nach ITS-90
Erstarrungspunkt Indium +156,5985 °C Eichpunkt nach ITS-90
Erstarrungspunkt Zinn +231,928 °C Eichpunkt nach ITS-90
Tripelpunkt Wasserstoff -259,3467 °C weiterer ITS-90-Fixpunkt
Tripelpunkt Neon -248,5939 °C weiterer ITS-90-Fixpunkt
Tripelpunkt Sauerstoff -218,7916 °C weiterer ITS-90-Fixpunkt
Erstarrungspunkt Zink 419,527 °C weiterer ITS-90-Fixpunkt
Erstarrungspunkt Aluminium 660,323 °C weiterer ITS-90-Fixpunkt
Erstarrungspunkt Silber 961,78 °C weiterer ITS-90-Fixpunkt
Erstarrungspunkt Gold 1064,18 °C weiterer ITS-90-Fixpunkt

Die Kalibrierung der Referenzthermometer findet in sogenannten Fixpunktzellen statt. Das sind Dewargefäße, in denen zum einen der Temperaturfixpunkt realisiert wird, indem zum Beispiel Indium zu seinem Schmelzpunkt erhitzt wird. Andererseits ermöglicht eine Röhre, den Sensor des Referenzthermometers einzubringen.[5]

Genauigkeit und Messfehler bei der Temperaturmessung

Die Messgenauigkeit eines Thermometers ist einerseits durch die Anzeige limitiert: weder kann man den Flüssigkeitsstand in einem herkömmlichen Flüssigkeitsthermometer genauer als ein Millimeter ablesen, noch ist möglich, mit einem digitalen Thermometer die Temperatur genauer zu bestimmen, als auf der Anzeige dargestellt. Andererseits garantiert der Hersteller von industriell gefertigten Thermometern nur eine bestimmte Übereinstimmung mit der Kalibrierung, die auf dem Gerät oder im Handbuch angegeben ist.

Unabhängig davon misst man mit allen Thermometern immer nur die Temperatur des Thermometers (genauer des Sensors), die erst durch einen Wärmeaustausch mit der Temperatur des zu messenden Objekts übereinstimmt. Bei Berührungsthermometern hängt die notwendige Zeitdauer der Messung damit insbesondere von den Wärmeleitfähigkeiten von Objekt und Sensor ab.

Bei Flüssigkeitsthermometern treten weitere Fehlerquellen auf: das Glasrohr selbst dehnt sich mit steigender Temperatur aus und beeinflusst dadurch den Innendurchmesser der Kapillare; die Kapillare selbst könnte ungenau gefertigt sein; auch ist der Ausdehnungskoeffizient der Flüssigkeit temperaturabhängig. Diese Effekte kann ein Hersteller teilweise dadurch ausgleichen, dass er die Skala erst bei der Eichung anbringt. Ein häufiger Ablesefehler bei Flüssigkeitsthermometern ist der Parallaxenfehler. Auch ist darauf zu achten, dass sich die Flüssigkeit bei der Lagerung evtl. in der Kapillare verteilt hat und erst wieder durch Klopfen oder Schleudern in die Messkugel gebracht werden muss.

Siehe auch

  • Deutsches Thermometermuseum Geraberg

Einzelnachweise

  1. Gerhard Stöhr: Thermometrie - Geschichte. Freunde alter Wetterinstrumente, 2002, abgerufen am 6. Dezember 2010 (html, deutsch).
  2. Dr. Fritz Burckhardt: Die Erfindung des Thermometers, Basel 1867, nach G. Schör.
  3. Optris GmbH: Was ist Infrarot-Temperaturmessung? Abgerufen am 2. August 2011 (html, deutsch).
  4. Physikalisch-Technische Bundesanstalt: Thermodynamische Temperaturen und die ITS-90 Skala. 16. September 2010, abgerufen am 6. Dezember 2010 (html, deutsch).
  5. Physikalisch-Technische Bundesanstalt: Praktische Temperaturmessung. 16. September 2010, abgerufen am 6. Dezember 2010 (html, deutsch, zur Erläuterung der Fixpunktzelle).

Weblinks

 Commons: Thermometer – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

News mit dem Thema Thermometer

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.