Szintillation (Astronomie)

Unter Szintillation (von lat. scintillare: „funkeln, flackern“) versteht man in der Astronomie eine sich scheinbar ändernde Helligkeit eines Sterns, die durch Lichtbrechung in der Erdatmosphäre hervorgerufen wird.

Entstehung

Diese schnelle und scheinbare Helligkeitsänderung wird dadurch verursacht, dass sich durch Luftunruhe die Brechzahl der Atmosphäre lokal leicht verändert und dadurch das Licht des Sternes leicht abgelenkt wird. Dieser Effekt ist vergleichbar damit, dass der Grund eines Schwimmbeckens aufgrund der Wellen an der Oberfläche nicht gleichmäßig von der Sonne ausgeleuchtet wird.

Eine wichtige Voraussetzung für diesen Effekt ist, dass Sterne selbst in großen Teleskopen punktförmige Objekte sind. Sonne, Mond und die Planeten zeigen keine Szintillationen, da sie auch auf der Erde als ausgedehnte Objekte erkennbar sind und sich die Schwankungen daher über die Ausdehnung des Objektes ausmitteln. Allerdings wird auch bei letztgenannten Objekten durch den Effekt eine geringere Bildschärfe erreicht, als technisch (also von der Optik, vom Filmmaterial oder der Auflösung des verwendeten CCD-Sensors) möglich wäre.

Bestimmung und Vermeidung

Bei der fotografischen Aufnahme oder anderen länger dauernden Messungen an Sternen macht sich die Szintillation aufgrund der Belichtungszeit dadurch bemerkbar, dass der Stern durch seine sich ständig leicht verändernde Position auf der Aufnahme größer wirkt, als er eigentlich ist. Dieser Effekt wird in der Astronomie Seeing genannt.

Eine Möglichkeit, die Szintillation auszugleichen, ist die Verwendung von aktiven oder adaptiven Optiken, wie sie bei Spiegelteleskopen seit einiger Zeit möglich ist. Eine weitere Möglichkeit besteht darin, die Teleskope an Orten mit sehr ruhiger Luft und/oder in hochgelegenen Bergregionen (wie z.B. dem Cerro Paranal) zu bauen, wie durch die Europäische Südsternwarte geschehen. Neuerdings ermöglicht auch hochlichtempfindliche Digitaltechnik das Herausrechnen der atmosphärischen Störungen: Bei sehr kurzen Belichtungszeiten wird eine Serie von Fotos erstellt, die dann durch einen Computer bereinigt werden oder von denen durch Vergleichsverfahren das Beste ausgewählt wird. Alternativ kann man auch zwei dicht beieinander liegende Lichtfrequenzbereiche analysieren und anhand deren leicht unterschiedlichen Brechungszahlen die Störungen herausrechnen.[1]

Ganz vermeiden kann man atmosphärische Effekte durch Platzierung des Teleskops im Weltraum. Das wohl bekannteste Beispiel dafür ist das Hubble-Weltraumteleskop.

Einzelnachweise

  1. http://imk-msa.fzk.de/Publications/Theses/MarionSchroedter/node5.html

Weblinks

Hans Schremmer: Szintillation. 17. November 2007, abgerufen am 12. Februar 2008.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.