Ringkern

Erweiterte Suche

Als Ringkern bezeichnet man einen magnetischer Kreis in Ringform. Aus geometrischer Sicht sind dies Toroide, Ronden, Rohrabschnitte bzw. kreisrunde Körper mit einem Loch in der Mitte. Zusammen mit Wicklungen bildet er ein induktives Bauteil wie z. B. eine Ringkernspule oder Ringkerntransformator.

Alle anderen Kernformen haben durch Ihre Teilbarkeit einen mehr oder weniger großen Luftspalt, so dass der Ringkern bezüglich der Ausnutzung der Materialeigenschaften als „ideal“ gilt. Je nach Magnetwerkstoff werden zur Feststellung der Materialeigenschaften häufig Ringkerne als Referenz herangezogen.

Verschiedene Ringkerne

Berechnungen

Für weiterführende Berechnungen bei Ringbandkernen sind die räumlichen Dimensionen notwendig. Als kennzeichnende Größen besitzt der Ringkern einen Außendurchmesser da, einen Innendurchmesser di sowie eine Höhe h und folgende physikalische Parameter:

  • magnetische Weglänge, Eisenweglänge: lFe
  • magnetischer Querschnitt, Eisenquerschnitt: AFe
  • Volumen, Eisenvolumen: VFe
  • Kernmasse: mFe
  • Eisenfüllfaktor: ηFe

mit den Zusammenhängen:

$ l_{Fe} = \frac{(da+di)}{2}\cdot\pi $
$ A_{Fe} = \frac{(da-di)}{2}\cdot h \cdot\eta_{Fe} $
$ V_{Fe} = l_{Fe}\cdot A_{Fe} $
$ m_{Fe} = l_{Fe}\cdot A_{Fe}\cdot\gamma $

Erläuterung: Der Eisenfüllfaktor ηFe stellt das Verhältnis zwischen magnetischem Kernquerschnitt zu geometrischem Kernquerschnitt dar. (typischer Wert für Ringbandkerne: 75–90 %)

Ringkerne aus Ferrit oder Pulverwerkstoffen

Diese Kernform wird durch das Pressen von Pulver in ein ringförmiges Werkzeug erzeugt. Die gepressten sogenannten „Grünlinge“ werden in nachfolgenden Temperaturbehandlungen verfestigt und im Fall von Ferritwerkstoffen bei hoher Temperatur zu einer Keramik gesintert. Anschließend folgen Verfahren zur Entgratung und ggf. zur Beschichtung mit Lack oder Kunststoff zur Isolation.

Alle Pulverwerkstoffe haben den Nachteil der Brüchigkeit, sodass derartige Ringkerne bei kräftigen Stößen häufig Risse bekommen, ihre Eigenschaften verlieren und im Extremfall zerreißen. Vorteil dieser Kerne sind deren geringe Fertigungskosten und die verrundeten Kanten, was die nachfolgende Bewicklung vereinfacht.

Während Ferritkerne ein ausgesprochen steiles Sättigungsverhalten zeigen, sind Pulverkerne aus Eisen- oder anderen magnetischen Pulvern (Kobalt, Nickel usw.) dadurch gekennzeichnet, dass in ihnen die einzelnen Pulverkörner weiterhin voneinander durch eine nichtmagnetische Schicht getrennt vorliegen. Dadurch besteht ein sogenannter verteilter Luftspalt, der hohe Sättigungsinduktionen sowie einen weichen Einsatz der Sättigung bewirkt.

Ringkerne aus Bandmaterial

Ringkern mit deutlich sichtbarem Luftspalt, geschlitzter Bandkern, zur Verwendung für einen Stromsensor

Die Herstellung von gewickelten Kernen aus Bandmaterial führte zu der Bezeichnung Ringbandkerne (RBK). Diese werden aus kristallinen Bändern z. B. aus kornorientiertem Elektroband oder NiFe-Werkstoffen sowie aus amorphen und nanokristallinen Legierungen hergestellt. Hierbei wird das Bandmaterial auf einem metallischen Zylinder befestigt und dann bis zur Sollstärke aufgewickelt. Nachdem das Ende ebenfalls befestigt wurde, erhält man nach dem Herausziehen des zylindrischen Wickeldornes den Ringbandkern. Je nach Legierung erfolgt dann eine Wärme- bzw. Feldwärmebehandlung in einem Ofen, um die optimalen Magneteigenschaften einzustellen. Banddicken zwischen 0,006 mm und 0,3 mm sind typisch. Zur Verminderung der Wirbelstromverluste werden die Bänder meistens mit einer möglichst dünnen Isolationsschicht ausgestattet.

Zum Schutz des RBK vor mechanischen Belastungen sowie zum Schutz des Wickeldrahtes vor den scharfen Kanten ist eine nachfolgende Isolation bzw. Umhüllung notwendig. Übliche Verfahren sind: Lackieren, Beschichten z. B. mit Epoxidpulver, Einlegen in Kunststoffgehäuse (Tröge) mit Deckel.

Gegenüber anderen Ringkernen kann ein Ringbandkern im Prinzip beliebig groß hergestellt werden. Ringbandkerne mit einem Außendurchmesser von über zwei Metern werden zum Beispiel in Teilchenbeschleunigern verwendet.

Für Sonderanwendungen sind sogenannte Mischkerne aus verschiedenen Legierungen hergestellt worden.

Alternativ zum gewickelten Bandkern sind auch Stanzscheibenkerne am Markt. Die Stanzringscheiben werden meist als Kernpakete gestapelt in Schutztrögen geliefert.

Die bei Pulverkernen eingebaute innere Scherung kann bei Bandkernen durch das Einbringen eines Luftspaltes erzeugt werden. Diese Technik erhöht deutlich die Gleichstromvorbelastbarkeit und wird häufig bei Speicherdrosseln und Speicherübertragern eingesetzt.

Eine andere Anwendung für geschlitzte Ringkerne ist die Strommessung. Im Spalt eines Ringkerns kann über die Auswertung der Feldstärke z. B. mit Hilfe einer Hallsonde der Strom berührungslos und potentialfrei gemessen werden, der durch einen Leiter im Innenloch des Kerns fließt. (Stromsensor)

Weiterverarbeitung von Ringkernen

Zur Herstellung von induktiven Bauteilen wie Transformatoren, Übertrager, Drosseln, usw. ist die Bewicklung der Ringkerne mit einem Leiter notwendig. Für die Wicklung kommt überwiegend Kupferlackdraht zum Einsatz. Für Ringkerne hat sich durch die geometrischen Besonderheiten eine eigenständige Bewickeltechnik etabliert.

Handbewicklung

Bei geringen Windungszahlen und auch bei sehr kleinen Ringkernen erfolgt die Bewicklung per Hand. Hierbei werden je nach Drahtlänge und Drahtstärke Hilfsmittel wie Nähnadeln oder Magazine bzw. Schiffchen benutzt.

Maschinenbewicklung

1. Ringkernwickelmaschinen sind seit über 50 Jahren etablierte Fertigungsanlagen. Am weitesten verbreitet sind die halbautomatischen Maschinen bei denen jeweils ein Bediener notwendig ist. Der Kern wird dabei in ein teilbares Magazin eingelegt, und der Wickeldraht auf das Magazin aufgespult. Danach erfolgt die Abwicklung des Drahtes vom Magazin auf den Ringkern, wobei der Kern in einer Aufnahme langsam um die eigene Achse gedreht wird. Je nach Kerngröße und entsprechend dünnem Draht sind Bewicklung von 5000 Windungen und mehr möglich. Relativ teuer und entsprechend selten sind vollautomatische Ringkernwickelmaschinen.

2. Für geringere Windungszahlen und größere Drahtstärken sind auch Häkelnadelmaschinen bekannt. Hierbei wird der Kern horizontal von außen gehalten, und eine in z-Achse bewegliche Häkelnadel taucht von unten durch das Innenloch des Kerns und zieht die komplette Drahtlänge mit sich.

Anwendungen von Ringkernen

Ringkerndrossel

Ferrit-Ringkerne werden u.a für stromkompensierte Drosseln verwendet. Sie tragen hierzu zwei gleichartige Wicklungen. Eine Sonderform dieser Drosseln sind auf Kabel aufgeschobene Rohrkerne, Ringe oder Perlen, die der Entstörung bei sehr hohen Frequenzen dienen.

Auch kleine Übertrager und Stromwandler für hohe Frequenzen werden aus Ferritringkernen hergestellt. Hierfür sind auch sogenannte Doppellochkerne in Gebrauch.

Eine historische Anwendung sind die Kernspeicher, die mit hartmagnetischen Ferritringen arbeiten.

Speicherdrosseln in Schaltnetzteilen sowie nicht stromkompensierte Entstördrosseln werden oft aus Pulverringkernen oder amorphen Ringbandkernen hergestellt.

Fehlerstromschutzschalter (FI-Schalter) sowie die elektronische DI-Schalter, Stromwandler u. a. für Stromzähler sowie Stromsensoren für Gleichstrom verwenden Ringbandkerne aus nanokristallinem Material. Für spezielle Sensoranwendungen sind aufwändig geschlitzte Kerne im Einsatz.

Ringkern-Netztransformatoren u. a. für Niedervolt-Halogenglühlampen werden aus texturiertem (kornorientiertem) Elektroblech hergestellt. Sie arbeiten mit Flussdichten von etwa 1,5 Tesla und haben ein steiles Sättigungsverhalten, was deren hohe Einschaltstromstöße verursacht. Da Ringkern-Netztransformatoren keinen fertigungsbedingten Luftspalt haben, werden sie bevorzugt eingesetzt wenn ein geringes magnetisches Streufeld gefordert ist, zum Beispiel in Audioverstärkern.

Entstördrosseln, Schnittstellenübertrager zum Beispiel im Bereich der Nachrichtentechnik wie bei ISDN, ADSL, LAN usw. verwenden oft ebenfalls Ringbandkerne.

Weblinks

Fachliteratur

  • Hans Fischer: Werkstoffe in der Elektrotechnik. 2. Auflage, Carl Hanser Verlag, München Wien, 1982 ISBN 3-446-13553-7
  • Prof. Dr. Günter Springer: Fachkunde Elektrotechnik. 18.Auflage, Verlag - Europa - Lehrmittel, Wuppertal, 1989, ISBN 3-8085-3018-9

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?