RESS-Verfahren

Erweiterte Suche

Das RESS-Verfahren (Rapid Expansion of a Supercritical Solution) ist eine Methode zur Partikelherstellung im niedrigen Mikrometerbereich aus organischen und anorganischen Stoffen. Hierbei wird das Substrat in überkritischem Gas (meist Kohlenstoffdioxid) gelöst und über eine Düse in einen Sammelbehälter gesprüht und dabei schlagartig entspannt. Durch die Druckabsenkung wird die Löslichkeitsgrenze des Substrats im sc(supercritical)-Fluid sprunghaft überschritten, da das Fluid dabei aus dem überkritischen in den unterkritischen Bereich gelangt, und fällt aus. Dabei entstehen Partikeln mit einem Durchmesser von 2–3 µm.

Schema einer RESS-Anlage. 1: Kompressor, 2: Vorlagebehälter, 3: Düse, 4: Druckausgleichsöffnung
Vorteil dieses Verfahrens ist vor allem, dass ein ungiftiges, leicht verfügbares und billiges Lösungsmittel (CO2) verwendet werden kann. Da CO2 sehr günstige kritische Daten hat (TC=31 °C, pC=73,8 bar) [1] sind die Betriebsbedingungen für das RESS-Verfahren dabei relativ moderat. Daher können auch thermisch wenig belastbare Stoffe verarbeitet werden. Anders als beim PGSS-Verfahren muss das Substrat außerdem nicht geschmolzen werden, sondern nur im sc-Fluid löslich sein.

Literatur

  • P.G. Debenedetti u.a.: Rapid expansion of supercritical solutions (ress): fundamentals and applications. In: Fluid Phase Equilibria. Volume 82, Februar 1993, S. 311–321.
  • M. Türk u.a.: Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. In: The Journal of Supercritical Fluids. Volume 22, Issue 1, Januar 2002, S. 75–84.

Einzelnachweise

  1. David R. Lide (Hrsg.): CRC Handbook Of Chemistry And Physics. 85. Auflage, CRC Press LLC, 2004, S. 6–53 (eingeschränkte Vorschau in der Google Buchsuche).

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.11.2021
Sonnensysteme | Exoplaneten
Wenig Kollisionsgefahr im Planetensystem TRAPPIST-1
Sieben erdgrosse Planeten umkreisen den Stern TRAPPIST-1 in nahezu perfekter Harmonie.
23.11.2021
Optik
„Maßgeschneidertes“ Licht
Ein Forscherteam entwickelt erstmals ein Lichtfeld, welches die Struktur des vierdimensionalen Raums widerspiegelt.
15.11.2021
Schwarze Löcher
Woher kommt das Gold?
Wie werden chemische Elemente in unserem Universum produziert?
08.11.2021
Teilchenphysik
Neue Einblicke in die Struktur des Neutrons
Sämtliche bekannte Atomkerne und damit fast die gesamte sichtbare Materie bestehen aus Protonen und Neutronen – und doch sind viele Eigenschaften dieser allgegenwärtigen Bausteine der Natur noch nicht verstanden.
08.11.2021
Physikdidaktik | Strömungsmechanik
Warum Teekannen immer tropfen
Strömungsmechanische Analysen der TU Wien beantworten eine alte Frage: Wie kommt es zum sogenannten „Teapot-Effekt“?
05.11.2021
Teilchenphysik | Thermodynamik
Elektronen-Familie erzeugt bisher unbekannten Aggregatzustand
Ein internationales Forschungsteam des Exzellenzclusters ct.
04.11.2021
Galaxien | Schwarze Löcher
Jet der Riesengalaxie M87
In verschiedenen Wellenlängen lässt sich ein gigantischer Teilchenstrahl beobachten, der von der Riesengalaxie M87 ausgestoßen wird.
04.11.2021
Galaxien
Am weitesten entfernter Nachweis von Fluor in sternbildender Galaxie
Eine neue Entdeckung gibt Aufschluss darüber, wie Fluor – ein Element, das in unseren Knochen und Zähnen als Fluorid vorkommt – im Universum entsteht.
02.11.2021
Monde | Kometen und Asteroiden
Planetologen erforschen schweres Bombardement des Mondes vor 3,9 Milliarden Jahren
Der Mond war vor 3,9 Milliarden Jahren einem schweren Bombardement mit Asteroiden ausgesetzt.
29.11.2021
Optik | Quantenoptik
Nur durch Billiardstel Sekunden getrennt
Ultrakurze Lichtblitze dauern weniger als eine Billiardstel Sekunde und haben eine wachsende technologische Bedeutung.