Quadrupol

Erweiterte Suche

Skizze des Aufbaus eines elektrischen Quadrupols für den Spezialfall einer quadratischen Anordnung.
Die Ladung der roten Punkte beträgt +Q, die der blauen Punkte -Q.
Potential eines elektrischen Quadrupols.

Ein Quadrupol entsteht aus der nebenstehend dargestellten Anordnung zweier entgegengesetzt-gleicher Dipole mit beliebigem Abstandsvektor, typischerweise $ {\vec {a}} $ genannt.

Allgemein kann einer beliebigen Ladungs- oder Stromverteilung, sofern sie nicht bestimmte Symmetrien besitzt, in zweiter Ordnung ein Multipolmoment zugeordnet werden. Dazu wird das eigentliche Potential durch eine Taylorentwicklung genähert. Dabei ergibt sich in dieser Multipolentwicklung u.a. auch ein Quadrupolmoment.

Aufgrund des Feldes senkrecht zur Achsenrichtung wird eine Anordnung von vier abwechselnd gepolten Elektroden im Fachjargon von Teilchenphysikern verkürzt als Quadrupol bezeichnet. In Wechselstrombetrieb werden durch diese Anordnung nur Teilchen einer bestimmten Masse durchgelassen, weshalb die Anordnung in Massenspektrometern angewendet wird.

Elektrischer Quadrupol

Der elektrische Quadrupol besteht aus zwei positiv und zwei gleich stark negativ geladenen Teilchen, die zwei entgegengesetzt-gleiche Dipole bilden. Also befinden sich die vier Ladungen in alternierender Anordnung an den Ecken eines Parallelogramms (in der Regel sogar eines Quadrates). Mathematisch präzise wird die Definition durch einen als „Quadrupol-Limes“ bezeichneten Grenzwertprozess, bei welchem der Flächeninhalt des Parallelogramms gegen Null konvergiert, während gleichzeitig die Ladungsstärke der an den Ecken des Parallellograms befindlichen Ladungen divergiert, und zwar so, dass das Produkt konstant bleibt, etwa   $ \{\lim _{a\to 0;\,a^{2}Q={\rm {konst.}}}\dots \}\,, $ wobei die Konstante positiv sein soll.

Das Potential ergibt sich als Überlagerung (Superposition) der Dipolpotentiale ΦD mit entsprechenden Gewichtungsfaktoren:

$ {\begin{matrix}\phi _{Q}({\vec {r}})&=&\left({\vec {r}}+{\dfrac {\vec {a}}{2}}\right)\phi _{D}-\left({\vec {r}}-{\dfrac {\vec {a}}{2}}\right)\phi _{D}\\\ &=&{\vec {a}}\cdot \nabla \phi _{D}+{\mathcal {O}}(|{\vec {a}}|^{3})\end{matrix}} $

Beim Übergang zur letzten Gleichung wurde die Taylorentwicklung benutzt und Terme der Größenordnung $ |{\vec {a}}|^{3} $ wurden vernachlässigt.

Aus der Multipolentwicklung erhält man den Quadrupolmomenttensor Q mit $ Q_{kl}=\sum _{i=1}^{n}q_{i}(3r_{ik}\,r_{il}-(r_{i})^{2}\,\delta _{kl}) $ bzw. $ Q_{kl}=\int \rho (\mathbf {r} ')\cdot (3r'_{k}\,r'_{l}-(r')^{2}\,\delta _{kl})\cdot d^{3}r' $ für kontinuierliche Ladungsverteilungen. So lässt sich das Potential auch alternativ darstellen als

$ \phi _{Q}({\vec {r}})={\frac {1}{8\pi \epsilon _{0}}}{\frac {{\vec {r}}^{T}\cdot Q\cdot {\vec {r}}}{r^{5}}}={\frac {1}{8\pi \epsilon _{0}}}{\frac {{\vec {r}}_{i}Q_{ij}\cdot r_{j}}{r^{5}}} $.

Magnetischer Quadrupol

Der magnetische Quadrupol besteht aus zwei entgegengesetzt gerichteten magnetischen Dipolen im Abstand $ {\vec {a}} $.

Anwendungen:

Gravitationswellen

Im Gegensatz zum Elektromagnetismus besitzt die Gravitation nur positive Ladungen (Massen). Daher ist die Definition eines gravitativen Quadrupols wie oben über zwei Dipole nicht möglich. Dennoch besitzen Massenverteilungen ein Quadrupolmoment. Die niedrigste Ordnung von Gravitationswellen ist eine Quadrupolstrahlung, die in der Form der Ausbreitung der elektromagnetischen Quadrupolstrahlung entspricht.[1]

Höhere Multipole

Analog können höhere Multipole behandelt werden, sog. Oktupole  beispielsweise durch alternierende Punktladungen auf den acht Ecken eines Parallelepipeds, z. B. eines Würfels der Kantenlänge a, mit dem „Oktupol-Limes“  $ \{\lim _{a\to 0;\,a^{3}Q={\rm {konst.}}}\dots \} $ (oder allgemeiner: ein einziger 2l-Pol wird angenähert durch Überlagerung zweier verschobener 2(l-1)-Pole mit entgegengesetztem Vorzeichen).

Fachliteratur

  • Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main, 2000, ISBN 3-8171-1628-4

Einzelnachweise

  1.  Ulrich E. Schröder: Gravitation: Eine Einführung in die allgemeine Relativitätstheorie. Harri Deutsch Verlag, Frankfurt am Main 2007, ISBN 978-3-8171-1798-7, S. 133 (eingeschränkte Vorschau in der Google Buchsuche).

Weblinks

 Commons: Quadrupoles – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.