Monsanto-Prozess

Erweiterte Suche

Der Monsanto-Prozess ist ein Verfahren zur industriellen Darstellung von Essigsäure. Der Prozess findet bei einem Druck von 30 bis 60 bar und einer Temperatur von 150 bis 200 °C statt mit einer Selektivität von über 99 %. Er wurde 1960 von BASF entwickelt und 1966 von Monsanto durch Einführung eines anderen Katalysator-Systems verbessert.[1] Dabei wird Methanol mit Kohlenmonoxid katalytisch zu Essigsäure umgesetzt. Die Summengleichung lautet:

$ \mathrm{CH_3OH + CO \longrightarrow CH_3COOH} $

Der Monsanto-Prozess wurde mittlerweile durch den Cativa-Prozess ergänzt, der bei ähnlichem Reaktionsmechanismus einen Iridiumkatalysator verwendet und der von der BP entwickelt wurde. Eine weitere Möglichkeit der Darstellung von Essigsäure bietet der Tennessee-Eastman-Prozess, unter Bildung von Essigsäureanhydrid.

Als biologisches Äquivalent kommt der reduktive Acetyl-CoA-Weg am Nächsten.

Katalytischer Zyklus

Katalytischer Zyklus des Monsanto-Prozesses

Die katalytisch aktive Spezies ist der anionische Komplex cis-[Rh(CO)2I2]- (1). Der katalytische Zyklus besteht aus sechs Schritten, von denen zwei nicht unter Beteiligung des Rhodiums ablaufen: die Konvertierung des Methanols in Methyliodid und die Hydrolyse des Acetyliodids in Essigsäure. Der erste Schritt ist die oxidative Addition des Methyliodids an den Rhodiumkomplex unter Bildung des Komplexes [(CH3)Rh(CO)2I3]- (2). Dieser Komplex lagert sich schnell, unter Insertion des Carbonyls in die Metall-Methylbindung, in den Acetylkomplex [(CH3CO)Rh(CO)I3]- (3) um. An diesen fünffach-koordinierten Komplex lagert sich ein weiteres Kohlenmonoxid-Molekül an. Dieser Komplex zerfällt unter reduktiver Eliminierung des Acetyliodids CH3COI, welches unter Hydrolyse in Essigsäure und HI zerfällt und der Bildung der Ausgangsverbindung. Die Reaktion ist erster Ordnung bezüglich des Katalysators und des Methyliodids. Daher wird angenommen, dass der geschwindigkeitsbestimmende Schritt die Oxidation des Methyliodids an den Katalysator ist.

Im Cativa-Prozess [2][3] ist der Iridium-Komplex [Ir(CO)2I2] die katalytisch aktive Spezies. Iridium ist einerseits ein billigeres Katalysatormetall, der Prozess erfordert auch weniger Wasser in der Reaktionslösung und erspart damit Trocknungsstufen in späteren Prozess-Schritten.

Tennessee-Eastman-Essigsäureanhydrid-Prozess

Die Bildung des Essigsäureanhydrids erfolgt durch die Carbonylierung von Methylacetat in einem Prozess, der sich an den Monsanto-Prozess anlehnt[4]

$ \mathrm{CH_3COOCH_3 + CO \longrightarrow (CH_3CO)_2O} $

Als Katalysatoren werden Rhodiumiodid und Lithiumsalze verwendet. Im Gegensatz zu den obigen Verfahren wird dieses Verfahren wegen der Empfindlichkeit des Anhydrids unter Ausschluss von Wasser durchgeführt.

Siehe auch

Einzelnachweise

  1. http://www.greener-industry.org.uk/pages/ethanoicAcid/6ethanoicAcidPM2.htm
  2. Jones J.H.: The CativaTM Process for the Manufacture of Acetic Acid. In: Platinum Metals Review. 44, Nr. 3, 2002, S. 94–105.
  3. Sunley G.J., Watson D.J.: High productivity methanol carbonylation catalysis using iridium - The CativaTM process for the manufacture of acetic acid. In: Catalysis Today. 58, Nr. 4, 2000, S. 293–307. doi:10.1016/S0920-5861(00)00263-7.
  4. Zoeller, J. R.; Agreda, V. H.; Cook, S. L.; Lafferty, N. L.; Polichnowski, S. W.; Pond, D. M. "Eastman Chemical Company Acetic Anhydride Process" Catalysis Today 1992, 13, S. 73–91. doi:10.1016/0920-5861(92)80188-S

Weblinks

 Commons: Monsanto process – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference
 Commons: Cativa process – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

18.06.2021
Quantenphysik
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.