Kelvin-Sonde

Erweiterte Suche

Die Kelvin-Sonde (englisch Kelvin probe, KP) findet bei der zerstörungsfreien Messung der Austrittsarbeit und bei der Untersuchung von Delaminierungsprozessen an Polymer-, Oxid-, und Metall-Grenzflächen Verwendung. [1] Die Kombination einer Kelvin-Sonde mit einem Rasterkraftmikroskop wird als Raster-Kelvin-Mikroskop oder Kelvinsondenkraftmikroskop (engl. scanning Kelvin probe microscope, SKPM, oder Kelvin probe force microscope, KPFM) bezeichnet.

Der Name der Kelvin-Sonde geht auf Lord Kelvin zurück.[2]

Prinzip

Messaufbau

Werden zwei Metalle in Kontakt gebracht, so fließen energiereichere Elektronen vom Metall höheren Ferminiveaus zu jenem mit geringerem Ferminiveau, bis diese auf gleicher Höhe liegen (vgl. Kontaktpotential). Aus diesem Elektronenfluss entsteht ein elektrisches Feld und eine Kontaktspannung $ \Delta \varphi $. Die Kontaktspannung $ \Delta \varphi $ resultiert aus der Austrittsarbeitsdifferenz:

$ \Delta W=e\cdot \Delta \varphi $

Die beiden Metalle haben gegeneinander eine Kapazität $ C $. Für die geflossene Ladung gilt:[3]

$ Q=C\cdot \Delta \varphi $.

Messung

Bei der Messung mit einer Kelvin-Sonde verhalten sich die leitfähige Sonde, die über der Probe mit Piezoaktoren in Schwingung versetzt wird, und die Probe wie zwei Kondensatorplatten.[4] Durch die Schwingung wird ein Strom $ i(t) $ influenziert, welcher linear von der Austrittsarbeitsdifferenz $ \Delta \varphi $ und nichtlinear vom Abstand zwischen Sonde und Probe abhängt. Durch eine externe Spannung $ U $ kann der Strom $ i(t) $ zu null geregelt werden. Dadurch ist die Austrittsarbeitsdifferenz bestimmt, denn es gilt $ U=\Delta \varphi $.

Der Aufbau eines KPFM ähnelt einem Rasterkraftmikroskop und kann eine bessere Ortsauflösung als die Kelvin-Sonde liefen. Als Sonde dient in diesem Fall eine sehr feine, leitfähige Spitze. Aufgrund der kleinen Geometrie der Spitze ist die Kapazität zwischen Spitze und Probe und somit auch der influenzierte Strom $ i(t) $ sehr klein. Mit einem Rasterkraftmikroskop ist jedoch die Messung kleinster Kräfte möglich. Daher wird bei diesem Aufbau statt des Stroms $ i(t) $ die elektrostatische Kraft zwischen Spitze und Probe gemessen. Durch Anlegen einer Spannung zwischen Spitze und Probe kann auch hier im Idealfall die Kraft eliminiert werden, so dass $ U=\Delta \varphi $ gilt.

Referenzen

  1. Universität Paderborn: Ausstattung
  2.  K. Lord: Contact electricity of metals. In: Phil. Mag. 46, 1898, S. 82–120.
  3. Herbert Kliem: Materialien der Mikroelektronik 1. Vorlesungsskript, WS2010/11.
  4.  K. Besocke, S. Berger: Piezoelectric driven Kelvin probe for contact potential difference studies. In: Review of Scientific Instruments. 47, Nr. 7, 1976, S. 840–842, doi:10.1063/1.1134750.

Weblinks

Die cosmos-indirekt.de:News der letzten Tage

22.06.2022
Teilchenphysik
Lange gesuchtes Teilchen aus vier Neutronen entdeckt
Ein internationales Forschungsteam hat nach 60 Jahren vergeblicher Suche erstmals einen neutralen Kern entdeckt – das Tetra-Neutron.
22.06.2022
Festkörperphysik
Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
15.06.2022
Exoplaneten
Zwei neue Super-Erden in der Nachbarschaft
Unsere Sonne zählt im Umkreis von zehn Parsec (33 Lichtjahre) über 400 Sterne und eine stetig wachsende Zahl an Exoplaneten zu ihren direkten Nachbarn.
15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
13.06.2022
Quantenphysik
Photonenzwillinge ungleicher Herkunft
Identische Lichtteilchen (Photonen) sind wichtig für viele Technologien, die auf der Quantenphysik beruhen.
10.06.2022
Kometen und Asteroiden | Sonnensysteme
Blick in die Kinderstube unseres Sonnensystems
Asteroiden sind Überbleibsel aus der Kinderstube unseres Sonnensystems und mit rund 4,6 Milliarden Jahren ungefähr so alt wie das Sonnensystem selbst.
07.06.2022
Galaxien | Sterne
Das Ende der kosmischen Dämmerung
Eine Gruppe von Astronomen hat das Ende der Epoche der Reionisation auf etwa 1,1 Milliarden Jahre nach dem Urknall genau bestimmt.