Ionisationskammer

Ionisationskammer

Ein Versuchsaufbau mit Ionisationskammer

Die Ionisationskammer (engl. ionization chamber, Abk. IC) ist ein Strahlungs- und Teilchendetektor, der zur Messung von Alpha-, Beta- und Gammastrahlung sowie zur Messung von Ionenstrahlen eingesetzt werden kann. Die Ionisationskammer gehört zur Reihe gasgefüllter Detektoren oder Zählrohre, die sich untereinander hinsichtlich der angelegten Hochspannung und der daraus folgenden verschiedenen Wirkungsweise unterscheiden.

Wird eine der beiden Elektroden mit spaltbarem Material beschichtet, kann die Ionisationskammer als Spaltkammer zum Nachweis freier Neutronen dienen (siehe auch Neutronendetektor).

Aufbau

Die Ionisationskammer besteht aus einer Kammer, in der sich ein Kondensator zur Erzeugung eines elektrischen Feldes befindet. Die Anode und Kathode sind, um über den gesamten Bereich einen möglichst gleichmäßigen Nachweis zu ermöglichen, entweder zentrisch (zylindrisch, halbkugelförmig, kugelförmig) oder planparallel aufgebaut. Zwischen Anode und Kathode befindet sich ein Zählgas (z.B. Luft oder Argon), in dem beim Einfall von Strahlung durch Ionisation Ladungsträger erzeugt werden. Das Zählgas wird passend zur Quantenenergie der gemessenen Strahlung gewählt. Ist das Zählgas keine Luft, wird die Kammer durch Fenster abgeschlossen, die für die untersuchte Strahlung durchlässig sind. Für niedrige Quantenenergien eignen sich Polyimid-Fenster. Für hohe Quantenenergien eignen sich Fenster aus Glaskohlenstoff (englisch: glassy carbon).

Wirkungsweise

An der Ionisationskammer liegt zwischen Anode und Kathode eine Hochspannung, die ein elektrisches Feld zwischen den Polen erzeugt. Diese Spannung wird so hoch gewählt, dass die „Lebenszeit“ entstehender freier Elektronen und Ionen bis zur Rekombination größer als die Flugdauer zu der jeweiligen Elektrode ist (Sättigungsspannung; siehe auch unter Zählrohr#Funktion). Ionisierende Strahlung, die in die Kammer eintritt, ionisiert das Gas, die Elektronen erreichen die Anode und werden als Stromimpuls messbar.

Je nach verwendetem Füllgas werden pro Ionisation 30 bis 40 eV der Energie der Strahlung absorbiert. Handelt es sich z.B. um monoenergetische Strahlung mit einer Energie von 1 MeV, so ist die Energie eines einzelnen Teilchens dieser Strahlung nach ca. 30.000 Ionisationen vollständig absorbiert. Somit kann man mit diesem Detektor die absorbierte Dosis oder die pro Zeiteinheit absorbierte Dosis, die Dosisleistung messen.

Verwendung

Eine Ionisationskammer wird beispielsweise im Hamburger Synchrotronstrahlungslabor (HASYLAB) im DESY in den Aufbau von Experimenten mit Synchrotronstrahlen eingebaut, um den nur wenige Nanometer breiten Strahl zu "scannen" (abzutasten) und damit seine genaue Lage festzustellen. In der Bauform des Füllhalterdosimeters benutzt man die Ionisationskammer als Dosimeter, also als Messgerät zur Messung der Strahlendosis im Rahmen des Strahlenschutzes. Eine weitere Anwendung sind Aktivimeter.

Bei hohem Strahlungsfluss und wenn die Energie des einzelnen Teilchens/Quants nicht gemessen werden muss, werden die Impulse von Ionisationskammern nicht einzeln registriert und analysiert (Impulsbetrieb), sondern das erzeugte Signal wird als zeitlich veränderlicher Strom gemessen (Strombetrieb).

Messgröße und Messbereich

Für die unter 'Verwendung' beschriebene Kammer im HASYLAB gilt:

0,0001 mSv/h - 0,01 Sv/h (Ortsdosisleistung)

0,1 mGy/h - 0,01 mGy/h (Energiedosisleistung)

Literatur

  • Glenn F. Knoll: Radiation detection and measurement. Wiley New York 1979, ISBN 0-471-49545-X.

Weblinks

Die News der letzten Tage