Induktive Erwärmung

Erweiterte Suche

(Weitergeleitet von Induktionsheizung)
Induktiv erwärmtes Werkstück
Induktiv erwärmtes Rundeisen

Induktives Erwärmen ist ein Verfahren, elektrisch leitfähige Körper durch in ihnen erzeugte Wirbelstromverluste zu heizen.

Die dazu benutzten Vorrichtungen sind die Induktionsheizung und der Induktionsofen. Sie erzeugen über eine von nieder- oder mittelfrequentem[1] Wechselstrom durchflossene Spule (dem Induktor) ein magnetisches Wechselfeld, das im Material Wirbelströme induziert, in ferromagnetischen Stoffen auch Ummagnetisierungsverluste. Häufige Anwendungen sind das Anlassen, Glühen, Löten, Schweißen, Schmelzen.

Merkmale

Die Wärme entsteht unmittelbar im Körper selbst, muss also nicht durch Wärmeleitung übertragen werden. Die Wärmeleistung ist gut steuerbar. Die elektrische Leistung stammt aus speziellen Frequenzumrichtern oder direkt aus dem Netz.

Induktive Erwärmung kann durch nichtleitende Materialien hindurch erfolgen, die Umgebung wird nur indirekt erwärmt. Das Verfahren kann unter beliebigen Gasen oder im Vakuum angewendet werden, es entstehen keine Verunreinigungen durch eine externe Wärmequelle.

Nachteilig ist die Störabstrahlung, insbesondere bei hochfrequenten Anlagen: in unmittelbarer Umgebung können andere elektrische oder elektronische Anlagen oder Geräte gestört werden.

Der Wirkungsgrad ist hoch, sofern nicht sehr gut leitende Materialien wie Aluminium oder Kupfer erwärmt werden sollen.

Die Form des meist wassergekühlten Induktors wird entsprechend der Form und Größe des Werkstückes oder der Erwärmungszone hergestellt. Die Frequenz muss an die Größe und Leitfähigkeit des Werkstücks angepasst werden: hohe Frequenzen erlauben oberflächennahes Erwärmen.

Die Konzentration der Feldlinien durch Polschuhe ist sehr gut möglich und wird besonders bei Flächenspulen oder bei der Konzentration für punktförmiges Erwärmen genutzt. Der Wirkungsgrad ist hierbei besonders bei Serienkreis-Generatoren sehr hoch. Es kann oft sogar auf das Kühlen des Induktors mit Kühlwasser verzichtet werden.[2]

Die Anschaffungskosten einer Induktions-Anlage können deutlich höher sein als bei konventionellen Verfahren wie Widerstandsheizung oder beim Erhitzen durch eine Flamme. Durch den hohen Wirkungsgrad moderner Halbleiter-Generatoren und die wesentlich höhere Energiedichte sind Induktionsgeneratoren allerdings hocheffizient und wirtschaftlicher als die vorgenannten Verfahren. Auch kurze Amortisationszeiten können dargestellt werden. Insbesondere in Kombination mit modernen Wärmerückgewinnungs-Systemen des Kühlkreislaufes ist eine Induktionserwärmungsanlage meist in den heute geforderten 24 Monaten amortisiert.[3]

Spezielle Anwendungen

  • Induktionskochfeld
  • gezielte Erwärmung bestimmter Bereiche, z. B. für das Härten oder für Beschichtungen, Klebe- oder Lötverbindungen
  • Erwärmung von Hülsen zur Herstellung bzw. Trennung von Schrumpfverbindungen
  • Zonenschmelzverfahren
  • Tiegelloses Schmelzen
  • Erhitzung des Getters bei Vakuumröhren, Ausheizen von Vakuum-Einbauteilen oder Elektroden durch den Glaskolben hindurch

Siehe auch

  • Dielektrische Erwärmung
  • Mikrowellenherd

Literatur

  • Bernard Nacke, Herbert Pfeifer (Hrsg.), Olaf Irretier, Taschenbuch industrielle Wärmetechnik, 2007, ISBN 3-8027-2937-4
  • Günter Benkowsky, Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißen; Grundlagen und praktische Anleitungen…, 1990, ISBN 3-341-00813-6
  • Elmar Wrona, Numerische Simulation des Erwärmungsprozesses für das induktive Randschichthärten komplexer Geometrien, 2005, ISBN 3-86537-396-8

Weblinks

Einzelnachweise

  1. http://de.ambrell.com/aboutinduction.php
  2. Benkowsky, Induktionserwärmung, ISBN 3-341-00813-6, S. 68 unten
  3. Benkowsky, Induktionserwärmung, ISBN 3-341-00813-6, Kap. 5, 5.1, S. 185ff.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?