Rankine-Skala

(Weitergeleitet von Grad Rankine)

Die Rankine-Skala ist eine Temperaturskala, die wie die Kelvin-Skala beim absoluten Temperaturnullpunkt ihren Nullwert hat, jedoch im Gegensatz zu dieser den Skalenabstand der Fahrenheit-Skala verwendet. Sie ist nach dem schottischen Ingenieur und Physiker William John Macquorn Rankine benannt, der sie im Jahre 1859 vorschlug (siehe auch die Rankine-Hugoniot-Gleichung). Sie wird vor allem in anglophonen Ländern anstatt des Kelvins benutzt.

Der Abstand von einem Grad Rankine (Einheitenzeichen: °Ra oder eingeschränkt °R) ist damit gleich dem Unterschied von einem Grad Fahrenheit, jedoch liegt der absolute Nullpunkt bei 0 Grad Rankine oder -459,67 Grad Fahrenheit. Grad Rankine ist keine SI-Einheit.

Temperaturdifferenzen mit dem Skalenabstand der Fahrenheit-Skala können auch in °Ra angeben werden, da sich deren Zahlenwert bei Differenzen nicht ändert: $ \frac{\Delta\,T}{\,^{\circ}\mathrm{Ra}}=\frac{\Delta\,\vartheta}{\,^{\circ}\mathrm{F}} $


Übersicht über die klassischen Temperaturskalen
Einheit Kelvin Grad Celsius Grad Fahrenheit Grad Rankine Grad Delisle Grad Réaumur Grad Newton Grad Rømer
Einheitenzeichen K °C °F °Ra, °R °De, °D °Ré, °Re, °R °N °Rø
unterer Fixpunkt F1 T0
= 0 K
TSchm(H2O)
= 0 °C
[Anm 1]
TKältemischung
= 0 °F
[Anm 2]
T0
= 0 °Ra
TSchm(H2O)
= 150 °De
TSchm(H2O)
= 0 °Ré
TSchm(H2O)
= 0 °N
TSchm(Lake)
= 0 °Rø
[Anm 3]
oberer Fixpunkt F2 TTri(H2O)
= 273,16 K
TSied(H2O)
= 100 °C
[Anm 1]
TMensch
= 96 °F
[Anm 2]
TSied(H2O)
= 0 °De
TSied(H2O)
= 80 °Ré
TSied(H2O)
= 33 °N
TSied(H2O)
= 60 °Rø
Skalenintervall (F2−F1) / 273,16
[Anm 4]
(F2−F1) / 100 (F2−F1) / 96 1 °Ra ≡ 1 °F (F1−F2) / 150 (F2−F1) / 80 (F2−F1) / 33 (F2−F1) / 60
Erfinder William Thomson Baron Kelvin Anders Celsius Daniel Fahrenheit William Rankine Joseph-Nicolas Delisle René-Antoine Ferchault de Réaumur Isaac Newton Ole Rømer
Entstehungsjahr 1848 1742 1714 1859 1732 1730 ≈ 1700 1701
Verbreitungsgebiet weltweit (SI-Einheit) weltweit USA USA Russland (19. Jhd.) Westeuropa bis Ende 19. Jhd.
Anmerkungen zur Tabelle:
  1. 1,0 1,1 Traditionelle Fixpunkte; ursprünglich umgekehrt (ähnlich wie Delisle-Skala); heute über Kelvin-Skala definiert, ΔT = 1 °C ≡ 1 K, also der 273,16-te Teil von TTri(H2O) = 0,01 °C.
  2. 2,0 2,1 Genutzt wurde die Temperatur einer Kältemischung von Eis, Wasser und Salmiak oder Seesalz (−17,8 °C) und die „Körpertemperatur eines gesunden Menschen“ (35,6 °C); heute über TSchm(H2O) = 32 °F und TSied(H2O) = 212 °F sowie ΔT = (F2−F1) / 180 definiert.
  3. Genutzt wurde die Schmelztemperatur einer Salzlake (−14,3 °C).
  4. Ursprünglich über Celsius-Skala definiert, ΔT = 1 K ≡ 1 °C.


Umrechnung zwischen den Temperatureinheiten
→ von → Kelvin (K) Grad Celsius (°C) Grad Réaumur (°Ré) Grad Fahrenheit (°F)
↓ nach ↓
TKelvin = TK = TC + 273,15 = T · 1,25 + 273,15 = (TF + 459,67) · 59
TCelsius = TK − 273,15 = TC = T · 1,25 = (TF − 32) · 59
TRéaumur = (TK − 273,15) · 0,8 = TC · 0,8 = T = (TF − 32) · 49
TFahrenheit = TK · 1,8 − 459,67 = TC · 1,8 + 32 = T · 2,25 + 32 = TF
TRankine = TK · 1,8 = TC · 1,8 + 491,67 = T · 2,25 + 491,67 = TF + 459,67
TRømer = (TK − 273,15) · 2140 + 7,5 = TC · 2140 + 7,5 = T · 2132 + 7,5 = (TF − 32) · 724 + 7,5
TDelisle = (373,15 − TK) · 1,5 = (100 − TC) · 1,5 = (80 − T) · 1,875 = (212 − TF) · 56
TNewton = (TK − 273,15) · 0,33 = TC · 0,33 = T · 3380 = (TF − 32) · 1160
→ von → Grad Rankine (°Ra) Grad Rømer (°Rø) Grad Delisle (°De) Grad Newton (°N)
↓ nach ↓
TKelvin = TRa · 59 = (T − 7,5) · 4021 + 273,15 = 373,15 − TDe · 23 = TN · 10033 + 273,15
TCelsius = TRa · 59 − 273,15 = (T − 7,5) · 4021 = 100 − TDe · 23 = TN · 10033
TRéaumur = TRa · 49 − 218,52 = (T − 7,5) · 3221 = 80 − TDe · 815 = TN · 8033
TFahrenheit = TRa − 459,67 = (T − 7,5) · 247 + 32 = 212 − TDe · 1,2 = TN · 6011 + 32
TRankine = TRa = (T − 7,5) · 247 + 491,67 = 671,67 − TDe · 1,2 = TN · 6011 + 491,67
TRømer = (TRa − 491,67) · 724 + 7,5 = T = 60 − TDe · 0,35 = TN · 3522 + 7,5
TDelisle = (671,67 − TRa) · 56 = (60 − T) · 207 = TDe = (33 − TN) · 5011
TNewton = (TRa − 491,67) · 1160 = (T − 7,5) · 2235 = 33 − TDe · 0,22 = TN


ausgewählte Temperaturwerte in verschiedenen Einheiten
Messwert \ Einheit Grad Fahrenheit Grad Rankine Grad Réaumur Grad Celsius Kelvin
mittlere Oberflächentemperatur der Sonne 9 941 °F 10 400 °Ra 4 404 °R 5 505 °C 5 778 K
Schmelzpunkt von Eisen 2 795 °F 3 255 °Ra 1 228 °R 1 535 °C 1 808 K
Schmelzpunkt von Blei 621,43 °F 1081,10 °Ra 261,97 °R 327,46 °C 600,61 K
Siedepunkt von Wasser (bei Normaldruck) 212 °F 671,67 °Ra 80 °R 100 °C 373,15 K
höchste im Freien gemessene Lufttemperatur 136,04 °F 595,71 °Ra 46,24 °R 57,80 °C 330,95 K
Körpertemperatur des Menschen nach Fahrenheit 96 °F 555,67 °Ra 28,44 °R 35,56 °C 308,71 K
Tripelpunkt von Wasser 32,02 °F 491,69 °Ra 0,01 °R 0,01 °C 273,16 K
Gefrierpunkt von Wasser (bei Normaldruck) 32 °F 491,67 °Ra 0 °R 0 °C 273,15 K
tiefste Temperatur in Danzig, Winter 1708/09 0 °F 459,67 °Ra −14,22 °R −17,78 °C 255,37 K
Schmelzpunkt von Quecksilber −37,89 °F 421,78 °Ra −31,06 °R −38,83 °C 234,32 K
tiefste im Freien gemessene Lufttemperatur −128,56 °F 331,11 °Ra −71,36 °R −89,2 °C 183,95 K
Gefrierpunkt von Ethanol −173,92 °F 285,75 °Ra −91,52 °R −114,40 °C 158,75 K
Siedepunkt von Stickstoff −320,44 °F 139,23 °Ra −156,64 °R −195,80 °C 77,35 K
absoluter Nullpunkt −459,67 °F 0 °Ra −218,52 °R −273,15 °C 0 K
Anmerkung: Die grau hinterlegten Felder bezeichnen die traditionellen Fixpunkte zur Festsetzung der betreffenden Einheit.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
08.01.2021
Optik - Teilchenphysik
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
08.01.2021
Festkörperphysik - Teilchenphysik
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
07.01.2021
Raumfahrt - Festkörperphysik - Quantenoptik
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
07.01.2021
Astrophysik - Relativitätstheorie
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
05.01.2021
Thermodynamik
Weder flüssig noch fest
E
05.01.2021
Quantenoptik
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
22.12.2020
Galaxien - Sterne
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.