Glaser-Kupplung

Erweiterte Suche

Bei der Glaser-Kupplung handelt es sich um eine Namensreaktion in der Organischen Chemie, die nach ihrem Entwickler Carl Glaser benannt wurde.[1] Die Reaktion wird zur Kupplung zweier endständiger (terminaler) Alkine zu Diinen benutzt. Es handelt sich um die älteste bekannte Kupplungsreaktion für Alkine.

Übersichtsreaktion

Bei der Glaser-Kupplung reagieren zwei terminale Alkine unter Zusatz von Basen und durch Katalyse von Kupfersalzen zu symmetrischen Diinen.

Übersicht der Glaser-Kupplung

Mechanismus

Die Glaser-Kupplung läuft in einer wässrigen oder alkoholischen Ammoniak-Lösung ab. Als Katalysator werden Kupfer(I)-salze benutzt. Hierzu eignen sich beispielsweise Kupfer(I)-chlorid, Kupfer(I)-bromid oder Kupfer(I)-acetat. Im ersten Schritt wird eine Base (klassischerweise Ammoniak) verwendet, die das CH-acide Proton des Alkins abspaltet.[2] Da der Mechanismus komplex und noch nicht völlig klar ist, läuft der nächste Schritt vermutlich so ab:[3] Das Acetylid-Anion bildet einen Kupferkomplex mit Kupfer(II)-Kationen.[4] Durch Oxidation der Kupfer(I)-salze mit dem Oxidationsmittel Sauerstoff werden die Kupfer(II)-Kationen hergestellt. Im Kupferkomplex übertragen die Acetylid-Anionen je ein Elektron auf ein Kupfer(II)-Kation. Somit werden die Acetylid-Anionen oxidiert und die Kupfer(II)-Kationen zu Kupfer(I)-Kationen reduziert. Es entsteht ein symmetrisches Diin.

Mechanismus der Glaser-Kupplung

Die Glaser-Kupplung und die Eglinton-Kupplung eignen sich für die Synthese von cyclischen Polyinen.[5]

Versionen

Hay-Kupplung

Die Hay-Kupplung verläuft Analog der Glaser-Kupplung. Lediglich verwendet sie TMEDA (TEMED) als Base, was zur Erhöhung der Löslichkeit in organischen Lösungsmitteln beiträgt und somit den Einsatz eines breiteren Spektrums an Lösungsmitteln ermöglicht.[6]

Eglinton-Kupplung

Die Eglinton-Kupplung ist der Glaser-Kupplung eng verwandt. Der Unterschied besteht in der Verwendung von Kupfer(II)- anstelle von Kupfer(I)-salzen als Oxidationsmittel. Außerdem werden die Kupfersalze nicht in katalytischen sondern stöchiometrischen Mengen benötigt. Da bei stöchimetrischem Einsatz des Kupfersalzes dieses nicht reoxidiert werden muss, wird zur Eglinton-Kupplung kein Sauerstoff benötigt. Als Kupferquelle wird beispielsweise Kupfer(II)-acetat eingesetzt, als Base dient meist Pyridin oder eine andere organische Stickstoffbase.[7]

Cadiot-Chodkiewicz-Kupplung

Während die Glaser-Kupplung nur die Kupplung zweier identischer Alkine ermöglicht, erlaubt die Cadiot-Chodkiewicz-Kupplung die Verwendung zweier verschiedener Reste am Alkin und ermöglicht die selektive Synthese unsymmetrischer Diine.

Cadiot-Chodkiewicz-Kupplung (Synthese unsymmetrischer Diine)

Literatur

  • R. Brückner: Reaktionsmechanismen, 3. Auflage, Spektrum Akad. Verlag, München 2004, S. 693. ISBN 3-8274-1579-9
  • T. Laue, A. Plagens: Namen- und Schlagwort-Reaktionen. 4. Auflage, Teubner, Wiesbaden 2004. ISBN 3-519-33526-3

Einzelnachweise

  1. C. Glaser: Beiträge zur Kenntniss des Acetenylbenzols, Berichte der deutschen chemischen Gesellschaft 1869, 2, 422–424.
  2.  T. Laue, A. Plagens: Namens- und Schlagwortreaktionen der Organischen Chemie. Teubner Verlag, 2006, ISBN 3-8351-0091-2, S. 153-155.
  3. László Kürti, Barbara Czakó: Strategic Applications of Named Reactions in Organic Synthesis; Elsevier Academic Press, Burlington-San Diego-London 2005, 1. Edition; ISBN 0-12-369483-3, S. 186.
  4. F. Bohlmann, H. Schönowsky, E. Inhoffen, G. Grau: Polyacetylenverbindungen, LII. Über den Mechanismus der oxydativen Dimerisierung von Acetylenverbindungen, Chem. Ber. 1964, 97, 794–800.
  5.  T. Laue, A. Plagens: Namens- und Schlagwortreaktionen der Organischen Chemie. Teubner Verlag, 2006, ISBN 3-8351-0091-2, S. 153-155.
  6. A. S. Hay: Oxidative Coupling of Acetylenes. II, J. Org. Chem. 1962, 27, 3320–3321.
  7. G. Eglinton and A. R. Galbraith: Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1: 3-diyne and related compounds, J. Chem. Soc. 1959, 889–896.

Siehe auch

cosmos-indirekt.de: News der letzten Tage