Eindringprüfung

(Weitergeleitet von Farbeindringprüfung)
1. Reinigung
2. Farbe auftragen und eindringen lassen
3. Oberflächliches reinigen
4. Entwickler auftragen

Die Eindringprüfung (nach DIN EN 571-1: Eindringprüfung, allgemeine Grundlagen) ist eine zerstörungsfreie Werkstoffprüfung, bei der die Kapillarkräfte von feinen Oberflächenrissen und Poren genutzt werden, um diese sichtbar zu machen. Unterschieden wird hierbei zwischen der Farbeindringprüfung und der fluoreszierenden Eindringprüfung.

Beispiel für das Auftragen des Eindringmittels durch Aufsprühen

Farbeindringprüfung (bei Tageslicht)

Hierzu wird die Oberfläche des zu prüfenden Bauteils von Fett- und Ölrückständen befreit und anschließend ein Eindringmittel (Kontraster) aufgebracht. Dies kann durch Auftragen mit einem Pinsel, durch Tauchen in einem Bad oder, an gut belüfteten Orten, durch Aufsprühen erfolgen (alle genannten Aufbringmethoden nennt man auch "Zwangsbenetzung"). Das Kriechvermögen des Eindringmittels ist hoch, nutzt die Kapillarwirkung von feinsten Materialtrennungen und es hat einen starken Farbkontrast zum Entwickler.

Nach Ablauf der vom zu prüfenden Werkstoff abhängigen Einwirkungszeit wird die Oberfläche mit Wasser oder einem speziellen Reiniger gereinigt, getrocknet und der Entwickler aufgetragen. Der Entwickler ist ein feinkörniges Pulver (meist auf Kalkbasis (Kreide), in Wasser oder Lösungsmittel suspendiert), das durch die Kapillarwirkung der eigenen Hohlräume (Saugfähigkeit) das in den feinen Rissen (Poren) verbliebene Eindringmittel herauszieht. Im Regelfall ist das Eindringmittel (eine Farbstofflösung) rot und der Entwickler weiß. Der hohe Farbkontrast ermöglicht das einfache Lokalisieren der Fehlerstellen und die Bestimmung der Rissverläufe.

Fluoreszierende Eindringprüfung (in Dunkeln (< 20 Lux))

Bei niedriger Umgebungshelligkeit kann mit fluoreszierendem Eindringmittel gearbeitet werden, das mit Hilfe von UV-Bestrahlung sichtbar gemacht wird. Diese Prüfung ist wesentlich empfindlicher als die Farbeindringprüfung, weil die fluoreszierenden Partikel einen Leuchtdichtekontrast durch Umwandlung der UVA-Strahlung in sichtbares Licht erzeugen. Die menschlichen Augen reagieren auf Leuchtdichtekontraste wesentlich empfindlicher als auf Farbkontraste. Hauptanwendungsgebiete der fluoreszierenden Eindringprüfung sind die Automobilindustrie, Luft- und Raumfahrt.

Anregungsquellen für die fluoreszierende Prüfung

Nach der EN ISO 3059 muss zu einer normkonformen, fluoreszierenden Prüfung, eine UV-A-Strahlenquelle, zur Anregung der Fluoreszenz,eingesetzt werden. Während in den letzten Jahrzehnten ausschließlich Entladungslampen (Quecksilberdampf-, Xenon- oder Metall-Halid-Lampen)eingesetzt wurden, werden heute primär UV-A-LED-Leuchten eingesetzt.

Neben der Fluoreszenzanregung mittels UV Licht kann auch Blaulicht (450 nm) verwendet werden. Die Verwendung von Blaulicht-Systemen ist nicht normkonform und Bedarf vor dem praktischen Einsatz umfangreicher Qualifizierungen und Prüfungen, da die auf UV-A-Strahlung (365 nm) ausgelegt am Markt erhältlichen Prüfmittel unter Umständen keine ausreichende Leuchtkraft unter Blaulicht entwickeln.

UV-Strahlung und Blaulicht können Augen und Haut stark gefährden, daher ist eine entsprechende Gefahrenanalyse und adäquate Schutzmaßnahmen sehr wichtig.

UV-Strahlung stellte eine bekannte Gefährdung der Augen und Haut dar. Wobei jedoch die übliche Strahlenbelastung bei der Verwendung von hochwertigen UV-A-Strahlenquellen und leichter persönlicher Schutzausrüstung (bedeckende Kleidung und UV-Schutzbrille)innerhalb einer 8 Stunden-Schicht so gering ist, dass es nicht zu Langzeitschädigungen kommt und die zulässige Strahlendosis bei weitem nicht überschritten wird. Die Gefährdung durch reine UV-A-Strahlung, wie sie für die fluoreziernede Oberflächenrißprüfung eingesetzt wird, ist an sich recht ungefährlich. Eine stark erhöhte UV-Strahlendosis durch fehlende Schutzmaßnahmen, z.B. im Solarium (ohne Schutz), wo auch viel UV-B und UV-C Strahlung emittiert wird, kann im Auge eine Entzündungen der Hornhaut sowie, bei einer erhöhten, ungeschützten Dosis über Monate, Jahre oder gar Jahrzehnte eine Katarakt-Erkrankung (Grauer Star), sowie auf der Haut Sonnenbrand oder Hautkrebs verursachen.

Blaues Licht liegt im sichtbaren Bereich des Lichtspektrum und passiert ungehindert die Augenlinse und trifft auf der Netzhaut auf. Von Blaulichtsystemen, wie sie teilweise in der fluorezsierenden Rißprüfung eingesetzt werden, wird hochenergetisches (aktinisches), blaues Licht (420 - 480 nm) emittiert das eine hohe photochemische Gefährdung (Blaulichtgefährdung, blue light hazard) für das Auge darstellt. Das emittierte Blaulicht kann die Netzhaut stark schädigen oder gar verbrennen (Photoretinitis), was innerhalb sehr kurzer Zeit zu einer unheilbaren völligen oder teilweisen Erblindung (Minutenbereich) oder Beeinträchtigungen der Farbsehvermögens (Sekundenbereich) führen kann. Von einer Gefährdung der Haut ist bei der Verwendung von Blaulichtsystemen nicht auszugehen.

Beide Strahlungsarten haben ein Gefahrenpotential, welches im Einzelfall festgestellt und beurteilt werden muss. Für den Einsatz an Standardarbeitsplätzen hat die Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) ein Merkblatt (EM 6) herausgegeben was eine einfache und sichere arbeitsschutzrechtliche Einstufung ermöglicht. Diese Richtlinie ist bei der DGZfP in Berlin oder dem Beuth Verlag des DIN erhältlich.

Für die Bewertung der Gefährdung am Arbeitsplatz ist u.a. die Richtlinie 2006/25/EG Verordnung optische Strahlung relevant.

Die Eindringprüfung ist auf allen Werkstoffen anwendbar, die eine eindeutige Anzeige von Oberflächenfehlern erlauben (nicht porös sind), vorwiegend auf Metallen, Kunststoffen (mit Einschränkungen, z. B. Teflon), glasierten Keramiken und ähnlichen. Bei Maschinenteilen aus Stahl wird wegen der hohen Korrosionsanfälligkeit gegen Wasser in der Regel ein Entwickler auf Lösemittelbasis verwendet, bzw., bei ferromagnetischen (nicht austenitischen) Stählen, gleich die Magnetpulverprüfung angewandt.

Die Farbeindringprüfung ist geeignet, Risse (bis zu einem tausendstel Millimeter Breite) in der Oberfläche eines Werkstoffs schnell zu finden. Allerdings kann es bei rauen bzw. spröden Oberflächen zu sog. Scheinanzeigen kommen. Diese Anzeigen sind keine Fehlstellen. Auch lässt das Verfahren keine Aussage über die Fehlstellentiefe (Risstiefe) in Bezug auf die Anzeigenintensität zu: eine beispielsweise zart rosa gefärbte Anzeige deutet nicht unbedingt auf einen weniger tiefen Riss hin als eine tiefrote Anzeige. Diese teilweise mangelnde Empfindlichkeit hat dazu geführt, dass dieses Verfahren beispielsweise im Rahmen von Prüfungen in der allgemeinen Luftfahrt nicht mehr als Prüfverfahren zugelassen ist.

Normen für die Eindringprüfung

Allgemeines

Eindringprüfungen, insbesondere in der Luft- und Raumfahrtindustrie, werden nicht nach der ursprünglich deutschen DIN EN ISO 3452 durchgeführt, sondern primär nach der amerikanischen AMS 2644, der die ISO 3452-2 mittlerweile sehr stark ähnelt. Zur Prüfung nach dieser Norm dürfen ausschließlich Produkte, die in QPL (qualified products list) der AMS 2644 gelistet und somit zugelassen sind, verwendet werden. Hauptunterschiede sind die in der ISO vorhandene Klassifizierung der Empfindlichkeit bei Farbeindringprüfmitteln und die Berücksichtigung und Zulassung von fluoreszierenden Farbeindringmitteln.

Normen

Deutsches Institut für Normung (DIN)
  • DIN 25435-2, Wiederkehrende Prüfungen der Komponenten des Primärkreises von Leichtwasserreaktoren - Teil 2: Magnetpulver- und Eindringprüfung
  • DIN EN 571-1, Zerstörungsfreie Prüfung - Eindringprüfung - Teil 1: Allgemeine Grundlagen
  • DIN EN 1371-1, Gießereiwesen - Eindringprüfung - Teil 1: Sand-, Schwerkraftkokillen- und Niederdruckkokillengußstücke
  • DIN EN 1371-2, Gießereiwesen - Eindringprüfung - Teil 2: Feingußstücke
  • DIN EN 2002-16, Luft- und Raumfahrt - Metallische Werkstoffe; Prüfverfahren - Teil 16: Zertörungsfreie Prüfung, Eindringprüfung
  • DIN EN 10228-2, Zerstörungsfreie Prüfung von Schmiedestücken aus Stahl - Teil 2: Eindringprüfung
  • DIN EN ISO 10893-4 Zerstörungsfreie Prüfung von Stahlrohren – Teil 4: Eindringprüfung nahtloser und geschweißter Stahlrohre zum Nachweis von Oberflächenunvollkommenheiten
  • DIN EN ISO 3059, Zerstörungsfreie Prüfung - Eindringprüfung und Magnetpulverprüfung - Betrachtungsbedingungen
  • DIN EN ISO 3452-2, Zerstörungsfreie Prüfung - Eindringprüfung - Teil 2: Prüfung von Eindringprüfmitteln
  • DIN EN ISO 3452-3, Zerstörungsfreie Prüfung - Eindringprüfung - Teil 3: Kontrollkörper
  • DIN EN ISO 3452-4, Zerstörungsfreie Prüfung - Eindringprüfung - Teil 4: Geräte
  • DIN EN ISO 3452-5, Zerstörungsfreie Prüfung - Eindringprüfung - Teil 5: Eindringprüfung bei Temperaturen über 50 °C
  • DIN EN ISO 3452-6, Zerstörungsfreie Prüfung - Eindringprüfung - Teil 6: Eindringprüfung bei Temperaturen unter 10 °C
  • DIN EN ISO 12706, Zerstörungsfreie Prüfung - Eindringprüfung - Begriffe
  • DIN EN ISO 23277, Zerstörungsfreie Prüfung von Schweißverbindungen - Eindringprüfung von Schweißverbindungen - Zulässigkeitsgrenzen
ASTM International (ASTM)
  • ASTM E 165, Standard Practice for Liquid Penetrant Examination for General Industry
  • ASTM E 1417, Standard Practice for Liquid Penetrant Testing

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

06.05.2021
Astrophysik - Relativitätstheorie
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Physikdidaktik - Quantenphysik
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat.
06.05.2021
Festkörperphysik - Quantenphysik
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
28.04.2021
Galaxien - Sterne
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.