Carnot-Wirkungsgrad

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
Carnot-Wirkungsgrad im Temperaturbereich zwischen 20 °C und 1000 °C

Der Carnot-Wirkungsgrad, auch Carnot-Faktor genannt, ist der höchste theoretisch mögliche Wirkungsgrad bei der Umwandlung von Wärmeenergie in mechanische Energie. Sein Name leitet sich ab vom Carnot-Prozess, einem vom französischen Physiker Nicolas Léonard Sadi Carnot erdachten idealen Kreisprozess, dessen Wirkungsgrad er beschreibt.

Theoretische Grundlage

Der Wirkungsgrad einer Wärmekraftmaschine wird durch den Zweiten Hauptsatz der Thermodynamik begrenzt. Dort, wo der Prozess die Wärme auf hohem Temperaturniveau entnimmt, tritt zwangsweise eine Abnahme der Entropie ein, bei der Abgabe auf niedrigem Temperaturniveau steigt sie. Da die Entropie bei freiwillig ablaufenden Prozessen nicht abnimmt, ist damit der Anteil der Wärmeenergie vorgegeben, der nicht in Arbeit umgewandelt werden kann, sondern als Wärme auf niedrigerem Temperaturniveau abgegeben werden muss.

Berechnung

Der Wirkungsgrad η berechnet sich aus dem Verhältnis der höchsten ($ \ T_h $) und der niedrigsten ($ \ T_n $) Temperatur des Prozesses nach der Formel:

$ \eta_c=\frac{T_h-T_n}{T_h}=1-\frac{T_n}{T_h} $

mit der absoluten Temperatur $ \! T $ in Kelvin.

Der Carnot-Wirkungsgrad ist umso höher, je größer $ \ T_h $ und je kleiner $ \ T_n $ ist. Da der absolute Nullpunkt (0 K) nicht erreicht werden kann, ist auch ein Wirkungsgrad von 100 % ausgeschlossen.

In der Praxis entweicht von der hohen Temperatur immer ein Teil an die Umgebung und die untere Prozesstemperatur bleibt immer höher als die Umgebungstemperatur. Es werden je nach Kreisprozess Werte von über zwei Drittel des Carnot-Wirkungsgrades erreicht.

Beispiel

Der Carnot-Wirkungsgrad eines Prozesses, der zwischen 800 °C und 100 °C abläuft, beträgt:

$ \eta_c=1-\frac{100+273{,}15}{800+273{,}15} = 0{,}652 = 65{,}2% $

Zusammenhang mit dem Zweiten Hauptsatz der Thermodynamik

Nach dem Zweiten Hauptsatz der Thermodynamik muss bei einem spontan ablaufenden Prozess die Entropie insgesamt zunehmen.

Die Entropie der Umgebung bei der höheren Temperatur nimmt um

$ \ \Delta S_h = - \frac{Q_h}{T_h} $

ab, wenn die Wärmekraftmaschine bei der oberen Temperatur Wärmeenergie entzieht.

Umgekehrt nimmt die Entropie in der Umgebung bei der niedrigen Temperatur um

$ \ \Delta S_n = \frac{Q_n}{T_n} $

zu, wenn die Maschine dort Wärmeenergie abgibt.

Die Maschine selber hat nach einem Umlauf den gleichen Zustand und damit dieselbe Entropie, auch die frei gewordene mechanische/elektrische Energie enthält keine Entropie.

Da die Entropie zunehmen muss, gilt

$ \ \Delta S_{\mathsf{gesamt}} = \Delta S_h + \Delta S_n = - \frac{Q_h}{T_h} + \frac{Q_n}{T_n} > 0 $
$ \ Q_n > \frac{Q_h \, T_n}{T_h} $.

Mechanisch oder elektrisch wird der Anteil der Energie genutzt, der nicht wieder als Wärme abgegeben wird, der Wirkungsgrad beträgt

$ \ \eta = \frac{W_{\mathsf{mech}}}{Q_h} = \frac {Q_h - Q_n}{Q_h} $.

Mit dem obigen Zusammenhang ergibt sich der Carnotwirkungsgrad:

$ \ \eta < \frac {Q_h - \frac{Q_h \, T_n}{T_h} }{Q_h} = 1 - 1 \cdot \frac {T_n}{T_h} $.

Bedeutung bei Kältemaschinen und Wärmepumpen

In Kältemaschinen und Wärmepumpen wird der entgegengesetzte Prozess betrieben, es wird mechanische (elektrische) Energie aufgewendet, um Wärmeenergie von niedrigen auf höhere Temperaturen zu heben.

Auch in diesem Fall gilt der zweite Hauptsatz, der Entropiegewinn bei der hohen Temperatur (Wärmeabgabe) muss größer als der Entropieverlust bei der niedrigen (Wärmeaufnahme) sein:

$ \frac{Q_h}{T_h} > \frac{Q_n}{T_n} $.

Daher beschreibt der Carnot-Wirkungsgrad hier nicht die maximal erzielbare mechanische Energie, sondern die mindestens aufzuwendende:

$ \frac {W_{\mathsf{mech}}}{Q_h} > 1 - \frac{T_n}{T_h} $.

Bei einer Wärmepumpe (WP) wird die Wärmeenergie auf dem oberen Temperaturniveau genutzt, die Leistungszahl ($ \epsilon_{\mathsf{WP}} $) beträgt daher

$ \epsilon_{\mathsf{WP}} = \frac {Q_h}{W_{\mathsf{mech}}} < \frac {1}{1 - \frac{T_n}{T_h} } = \frac {T_h}{T_h-T_n} $.

Bei einer Kältemaschine (KM) wird entsprechend das Verhältnis ($ \epsilon_{\mathsf{KM}} $) von abgeführter Wärme zur aufgewendeten mechanischer Energie betrachtet:

$ \epsilon_{\mathsf{KM}} = \frac {Q_n}{W_{\mathsf{mech}}} < \frac{Q_h \, \frac{T_n}{T_h}}{W_{\mathsf{mech}}} < \frac {\frac{T_n}{T_h}}{1 - \frac{T_n}{T_h} } = \frac {T_n}{T_h -T_n} $.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.03.2021
Sonnensysteme - Teilchenphysik
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
01.03.2021
Akustik - Optik - Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.