Atom Transfer Radical Polymerization

Erweiterte Suche

Atom Transfer Radical Polymerization (ATRP) ist eine besondere Form der 'Living' / Controlled Free Radical Polymerization (LFRP).

Sie zeichnet sich dadurch aus, dass die Konzentration freier Radikale durch Zusatz eines Übergangsmetallkomplexes und in Kombination mit einem Atomtransferprozess mit einem Organohalogenid soweit erniedrigt wird, dass Kettenabbruchreaktionen, wie Disproportionierung oder Rekombination, weitestgehend zurückgedrängt werden. Der kinetische Grund hierfür ist die Abhängigkeit der Reaktionsgeschwindigkeiten (sowohl Kettenwachstum als auch Abbruchsreaktionen) von der Konzentration aktiver Kettenenden. Für das Wachstum folgt sie dabei einem Geschwindigkeitsgesetz 1. Ordnung, für die rekombinativen Abbruchsreaktionen einem Gesetz 2. Ordnung. Somit ist die Reaktionsgeschwindigkeit der Abbruchreaktionen durch eine Erniedrigung der Kettenendenkonzentration (Prinzip aller LFRPs) stärker betroffen als die Reaktionsgeschwindigkeit des Kettenwachstums.

Dadurch können Polymere synthetisiert werden, die sich durch Kontrolle über die Molekülmasse und einer engen Verteilung der molaren Masse auszeichnen.

Die ATRP wurde erstmals 1995 fast gleichzeitig von Mitsuo Sawamoto und Krzysztof Matyjaszewski entdeckt und unabhängig voneinander beschrieben.

Siehe auch

Literatur

  • Sawamoto et al.: Macromolecules 28. 1995, S. 1721
  • J. Wang, K. Matyjaszewski: Journal of the American Chemical Society 117. 1995, S. 5614–5615.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?