Atemgasanalyse

Erweiterte Suche

Atemgasanalyse ist die wissenschaftliche Untersuchung der menschlichen Atemluft. Ziel ist es einerseits, Markersubstanzen zu identifizieren, die Rückschlüsse auf den klinischen Zustand eines Patienten erlauben, und andererseits mathematische Modelle zu entwickeln, die es erlauben, von Atemgaskonzentrationen auf die entsprechenden Blutkonzentrationen umzurechnen. Die gewonnenen Erkenntnisse können dann in Atemgastests für die medizinische Diagnostik umgesetzt werden.

Im Gegensatz zu Blutproben ist die Abnahme von Atemgasproben für den Patienten nicht-invasiv und kann auch beliebig oft wiederholt werden. Atemgasproben können in Echtzeit ausgewertet werden und ermöglichen daher auch eine kontinuierliche Beobachtung der Veränderung von Körpersubstanzen zum Beispiel am Ergometer, im Schlaflabor oder in der Intensivmedizin.

Konnten früher nur Stoffe in hohen Konzentrationen wie z.B. Kohlenstoffdioxid und Alkohol identifiziert werden, ist es durch die Fortschritte der letzten Jahre in der Analysetechnik (GC-MS, PTR-MS, SIFT-MS, IMS, chemische Sensoren) möglich, ein einzelnes Teilchen in einer Billion Teilchen (ppt) zu entdecken.

Geschichte

Die moderne Ära der Atemgasanalyse wurde vom Nobelpreisträger Linus Pauling eingeleitet, der nachwies dass die menschliche Atemluft über 200 flüchtige organische Verbindungen (volatile organic compounds, VOCs) in picomolarer Konzentration enthält.[1]

Zusammenhang Atemgas-/Blutkonzentrationen

Ein einfaches Modell für den Zusammenhang zwischen Atemgas- und Blutkonzentrationen wurde von Farhi[2] angegeben:

$ C_{A}={\frac {C_{\bar {v}}}{\lambda _{\text{b:air}}+{\dot {V}}_{A}/{\dot {Q}}_{c}}}. $

Hierbei ist $ C_{A} $ die alveolare Konzentration (dabei wird angenommen das sie mit der gemessenen übereinstimmt), $ C_{\bar {v}} $ die gemischt venöse Konzentration, und $ \lambda _{\text{b:air}} $ der Blut:Luft Partitionskoeffizient, und $ {\dot {V}}_{A}/{\dot {Q}}_{c} $ das Ventilations-Perfusions-Verhältnis (in Ruhe ca. 1).

Multipliziert man zum Beispiel nach dieser Gleichung die durchschnittliche Acetonkonzentration von $ 1\mu g/l $ in der end-tidalen Atemluft mit dem Partitionskoeffizienten $ \lambda _{\text{b:air}}=340 $, so erhält man um einen Faktor 3 abweichende Werte von den tatsächlich gemessenen arteriellen Blutwerten die im Bereich von $ 1mg/l $ liegen. Für Isopren mit einem Partitionskoeffizienten $ \lambda _{\text{b:air}}=0.75 $ kann das Ventilations-Perfusions-Verhältnis in dieser Gleichung auch nicht mehr vernachlässigt werden.

Weiterentwicklungen dieses Modells sind daher ein aktuelles Forschungsgebiet[3][4]

Einzelnachweise

  1.  Anil S. Modak: Single time point diagnostic breath tests: a review. In: Journal of Breath Research. 4, Nr. 1, 2010, S. 017002, doi:10.1088/1752-7155/4/1/017002.
  2.  Leon E. Farhi: Elimination of inert gas by the lung. In: Respiration Physiology. 3, Nr. 1, Juli 1967, S. 1-11, doi:10.1016/0034-5687(67)90018-7.
  3.  Julian King, Helin Koc, Karl Unterkofler, Pawel Mochalski, Alexander Kupferthaler, Gerald Teschl, Susanne Teschl, Hartmann Hinterhuber, Anton Amann: Physiological modeling of isoprene dynamics in exhaled breath. In: Journal of Theoretical Biology. 267, Nr. 4, 21. November 2010, S. 626-637, doi:10.1016/j.jtbi.2010.09.028.,
  4.  Julian King, Karl Unterkofler, Gerald Teschl, Susanne Teschl, Helin Koc, Hartmann Hinterhuber, and Anton Amann: A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. In: Journal of Mathematical Biology. 63, 2011, S. 959-999, doi:10.1007/s00285-010-0398-9.

Weblinks

Die cosmos-indirekt.de:News der letzten Tage

20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.