Angeli-Rimini-Reaktion

Erweiterte Suche

Die Angeli-Rimini-Reaktion ist eine spezifische Nachweisreaktion für Aldehyde, bei der durch Reaktion des Aldehyds mit einem Derivat des Hydroxylamins eine Hydroxamsäure entsteht, die mit Eisen(III)-chlorid einen intensiv roten Komplex ergibt.[1] Die Reaktion wurde von den italienischen Chemikern Angelo Angeli und Enrico Rimini entdeckt und 1896 veröffentlicht.[2][3]

Die Angeli-Rimini Reaktion
Die Angeli-Rimini-Reaktion, hier mit Benzolsulfhydroxamsäure (Benzolsulfonsäurehydroxylamid, N-Hydroxybenzolsulfonamid) als Reagenz


Bildung des Eisen(III)-komplexes
Bildung des roten Eisen(III)-komplexes

Mechanismus

Für den genauen Verlauf der Hydroxamsäurebildung werden mehrere Reaktionswege diskutiert:[4]

Mechanismus der Angeli-Rimini-Reaktion

Das N-Hydroxybenzoesulfonamid 1 oder die deprotonierte Form 2 fungiert als Nukleophil in der Reaction mit dem Aldehyd 3 zum Intermediat 4. Nach intramolekularem Protonenaustausch zu 5 wird ein Benzolsulfinatanion abgespalten und über das Nitron 6 und die Zwischenstufe 7 die Hydroxamsäure 8 gebildet.

Alternativ wird diskutiert, dass aus 4 nach Abspaltung des Sulfinsäureanions eine Aziridin-Zwischenstufe 9 gebildet wird, die direkt zur Hydroxamsäure 8 weiterreagiert.

Das Auftreten von Hydroxylnitren (NOH, 10) konnte dagegen definitiv ausgeschlossen werden.

Ursprünglich wurde als Reagenz das instabile Nitrohydroxylamin[5] bzw. dessen Dinatriumsalz (Dinatrium-trioxodinitrat(II), Angeli-Salz) verwendet; hier fungiert das Nitrition als Abgangsgruppe. Da sich dieses Salz unter Bildung des sehr instabilen Nitrosowasserstoffs (HNO, Nitroxyl) zersetzt[6], wird auch ein Reaktionsmechanismus diskutiert, der über freies Nitroxyl verläuft.

Einzelnachweise

  1. Römpp CD 2006, Georg Thieme Verlag 2006.
  2. Angelo Angeli, Gazz. Chim. Ital. 1896, 26, 17.
  3. Rimini, E. Gazz. Chim. Ital. 1901, 31, 84.
  4. Reaction of aldehydes with N-hydroxybenzenesulfonamide. Acetal formation catalyzed by nucleophilesAlfred Hassner, E. Wiederkehr, and A. J. Kascheres J. Org. Chem.; 1970; 35(6) pp 1962 - 1964; (doi:10.1021/jo00831a052).
  5. Paul Karrer, Lehrbuch der Organischen Chemie, 7. Aufl., Georg Thieme Verlag 1941.
  6. Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, de Gruyter Verlag 1995, ISBN 3-11-012641-9.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?