Analysenwaage

Die Analysenwaage ist die empfindlichste Form einer Präzisionswaage. Mit einer Auflösung von üblicherweise 0,1 mg ist sie dafür geeignet, extrem geringe Stoffportionen auszuwiegen.

Noch genauere Waagen, die eine Auflösung von 1 Mikrogramm haben, werden Mikrowaagen genannt.

Ältere Bauart

Analysenwaage älterer Bauart

Analysenwaagen waren früher automatische Balkenwaagen, die nach dem Substitutionsprinzip arbeiten. Auf beiden Seiten des Balkens hingen typischerweise 200 Gramm an Masse, auf der Seite mit der Waagschale konnte man mit einer Mechanik Bruchteile dieser Masse vom Balken abheben. Mit einem groben Wägen wurde ermittelt, wie schwer eine Probe in Gramm ist, diese Masse wurde dann mittels der Mechanik abgehoben, und das eigentliche Wiegen in Gang gesetzt, indem eine Arretierung des Balkens gelöst wurde. Dann konnte man mit der Mechanik weitere geringe Gewichte abheben oder hinzufügen, der entscheidende Faktor war aber eine geeichte Stahlfeder, über die man eine kleine Kraft auf den Balken ausüben konnte, um diesen in Waage zu bringen. An dem mit ihr verbundenen Regler war ablesbar, wie vielen zusätzlichen Milligramm bzw. Zehntel Milligramm diese Kraft entsprach. Nach dem Wiegen wurde der Balken wieder arretiert, bevor die Probe entnommen wurde.

Durch das Substitutionsprinzip konnte eine einseitige Verformung des Wiegebalkens und damit ein Messfehler verhindert werden, vollkommen unabhängig davon, ob die Probe nur einige Gramm oder hunderte Gramm Masse hatte. Dennoch mussten die Waagen regelmäßig nachkalibriert bzw. geeicht werden, da sich die Mechanik auf Dauer verformte und einen zunehmenden Messfehler verursachte. Temperaturschwankungen hätten dies beschleunigt.

Zur Ausrichtung hatten Analysenwaagen eine Libelle, ähnlich einer Wasserwaage, die mittels Fußrändelschrauben justiert wird. Jede noch so geringe Schräglage hätte in ihrer Messgenauigkeit zu einem erheblichen Messfehler geführt, ebenso wurden sie durch kaum wahrnehmbare Erschütterungen und trotz einer geschlossenen Kammer um der Waagschale auch durch Luftströmungen gestört. Wiegeräume waren daher besonders gut gedämmt, möglichst stabil klimatisiert und zumeist fensterlos bzw. unbelüftet.

Modernere Bauart

Moderne Analysenwaage

Moderne Analysenwaagen arbeiten nach dem Prinzip des kompensierten Drehmoments. Dabei wird durch die zu messende Masse ein Drehmoment erzeugt, das durch eine elektromagnetische Kraft kompensiert wird. Die Messung dieser Kraft kann sehr präzise erfolgen und der Messwert ist schnell stabil.

Fingerabdrücke und Luftfeuchtigkeit auf den Proben führen bereits zu falschen Ergebnissen, obgleich die Waage richtig misst. Daher müssen die Probenbehälter vor einer Analyse gründlich gereinigt und während der Analyse vor Verunreinigungen jeglicher Art geschützt werden. Ferner müssen die Probenbehälter sowohl leer als auch mit der zu wiegenden Probe vor dem Wiegen in einem Exsikkator vollständig getrocknet werden.

Die Anwendungen von Analysenwaagen sind vor allem chemische, quantitative Analysen, bei denen man in einem Behälter gesammelte Rückstände wiegt, und die vorher ermittelte Masse des Behälters von dem Messwert abzieht. Der Messbereich von Analysenwaagen ist im Grunde viel zu genau, um irgendwelche Substanzen für eine Rezeptur abzumessen wie man es mit gewöhnlichen Waagen macht, da bereits eine geringe Anzahl von Speisesalzkörnchen die Milligrammgrenze überschreitet. Man kann aber vor einer quantitativen nasschemischen Analyse genau ermitteln, wie viel von einer Substanz man verwendet hat, falls dies eine Bedeutung für die Berechnung des Ergebnisses hat. Für Synthesen oder qualitative chemische Analysen sind Analysenwaagen praktisch bedeutungslos.

Weblinks

 Commons: Analysenwaagen – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

06.05.2021
Astrophysik - Relativitätstheorie
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Physikdidaktik - Quantenphysik
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat.
06.05.2021
Festkörperphysik - Quantenphysik
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
28.04.2021
Galaxien - Sterne
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.