Ablenkspule

Erweiterte Suche

Ablenksystem eines Fernsehempfängers (Bildröhre entfernt); zu sehen sind die Horizontal-Ablenkspulen

Systeme aus Ablenkspulen oder elektrisch geladener Platten dienen der Richtungsablenkung bewegter geladener Teilchen. Die Teilchen (Ionen, Elektronen, Positronen usw.) werden mit Ablenkspulen entsprechend der Lorentzkraft senkrecht zu den Magnetfeldlinien aus ihrer ansonsten geraden Bahn gelenkt.

Elektrostatische Ablenkung nutzt die elektrostatische Anziehung bzw. Abstoßung zur Ablenkung. Siehe hierzu Ablenkplatte.

Ablenkspulen und elektromagnetische Ablenksysteme dienen u.a.:

  • in Bildröhren, die beispielsweise in Fernsehgeräten und Monitoren verwendet werden, um den Elektronenstrahl über den Bildschirm zu scannen
  • in Teilchenbeschleunigern, um bestimmte Elementarteilchen zu separieren, auf bestimmte Versuchsstationen oder Bahnen zu lenken (siehe auch Ablenkmagnet)
  • in Nebelkammern, um geladene von ungeladenen Teilchen unterscheiden zu können
  • in Elektronenmikroskopen und Elektronenstrahlschweißanlagen zur Fokussierung und zur Strahlablenkung des Elektronenstrahls
  • in Massenspektrometern (teilweise in Kombination mit elektrostatischer Ablenkung) zur Separierung unterschiedlicher Atommassen

Das Ablenksystem von Bildröhren befindet sich an deren Außenseite zwischen Bildebene und Elektronenkanone. Es erzeugt orthogonal zueinander und zum Elektronenstrahl zeitveränderliche Magnetfelder, die den Elektronenstrahl ablenken und an eine bestimmte Stelle auf den Bildschirm richten. Es sind Spulenpaare für die senkrechte und für die waagerechte Ablenkung enthalten, die jeweils mit einem sägezahnförmigen Strom unterschiedlicher Frequenz gesteuert werden. Die sägezahnförmigen Ströme bestimmen die Bildfrequenz (vertikale Ablenkung, horizontale Spulenachse) und die Zeilenfrequenz (horizontale Ablenkung, vertikale Spulenachse, siehe Bild).
Farbbildröhren erfordern neben diesen beiden Spulenpaaren weitere kleinere Korrektur-Ablenkspulen zur Erreichung der Konvergenz.

In Oszilloskopen (vgl. Braunsche Röhre) werden wegen der erforderlichen hohen Geschwindigkeit und der geringen Ablenkwinkel anstelle der Ablenkspulen Ablenkplatten verwendet, die ein elektrisches Feld erzeugen und dadurch den negativ geladenen Elektronenstrahl ablenken (elektrostatisches Ablenksystem).

Elektrostatische und magnetische Ablenksysteme unterscheiden sich hinsichtlich der für eine bestimmte Ladung des Teilchens erreichten Ablenkradien:

  • bei magnetischer Ablenkung ist der Ablenk-Radius proportional zum Impuls und damit zur Geschwindigkeit des Teilchens
  • bei elektrostatischer Ablenkung ist der Radius proportional zur Bewegungsenergie und damit zum Quadrat der Geschwindigkeit des Teilchens

Der Grund ist, dass die Lorentzkraft (magnetische Ablenkung) auf das Teilchen mit der Geschwindigkeit ansteigt, die elektrostatische Anziehung jedoch nicht. Daraus folgt, dass besonders schnelle Teilchenstrahlen schlecht elektrostatisch abgelenkt werden können - das Ablenksystem von Bildröhren arbeitet daher magnetisch, um die großen Ablenkwinkel zu realisieren. Auch in Teilchenbeschleunigern werden Ablenkmagnete eingesetzt.

Die unterschiedlichen Abhängigkeiten werden beim Massenspektrometer (Kombination aus elektrostatischer und elektromagnetischer Ablenkung) ausgenutzt, um die Masse der Teilchen ohne Kenntnis deren Geschwindigkeit bestimmen zu können.

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.