Weyl-Quantisierung

Erweiterte Suche

Die Weyl-Quantisierung ist eine Methode in der Quantenmechanik, um systematisch einen quantenmechanischen Hermiteschen Operator umkehrbar auf eine klassische Verteilung im Phasenraum abzubilden. Daher wird sie auch Phasenraum-Quantisierung genannt.

Die dieser Quantisierungsmethode zugrundeliegende wesentliche Korrespondenzabbildung von Phasenraumfunktionen auf Operatoren im Hilbertraum wird Weyl-Transformation genannt. Sie wurde zuerst 1927 von Hermann Weyl[1] beschrieben.

Im Gegensatz zu Weyls ursprünglicher Absicht ein konsistentes Quantisierungsschema zu finden, bildet diese Abbildung nur eine Darstellungsänderung. Sie muss klassische und quantenmechanische Größen nicht verbinden: Die Phasenraum-Verteilung darf auch von der Planckschen Konstante h abhängen. In einigen bekannten Fällen, die einen Drehimpuls beinhalten ist das so.

Die Umkehrung dieser Weyl-Transformation ist die Wignerfunktion. Sie bildet aus dem Hilbertraum in die Phasenraumdarstellung ab. Dieser umkehrbare Wechsel der Darstellung erlaubt es, Quantenmechanik im Phasenraum auszudrücken, wie es in den 1940er von Groenewold und Moyal vorgeschlagen wurde.[2] [3]

Beispiel

Im folgenden wird die Weyl-Transformation am 2-dimensionalen Euklidschen Phasenraum dargestellt. Die Koordinaten des Phasenraums seien (q,p) ; ferner sei f eine Funktion, die überall im Phasenraum definiert ist. Die Weyl-Transformation von f ist durch den folgenden Operator im Hilbertraum gegeben (größtenteils analog zur Delta-Distribution):

$ \Phi [f] = \frac{1}{(2\pi)^2}\iint_{q,\,a} \iint_{p,\,b} f(q,p) \left(e^{i(a(Q-q) +b(P-p))}\right) dq\, dp\, da\, db. $

Nun werden die Operatoren P und Q als Generatoren einer Lie-Algebra, der Heisenberg-Algebra genommen:

$ [P,Q]=PQ-QP=-i\hbar,\, $

Dabei ist $ \hbar $ das reduzierte Plancksche Wirkungsquantum. Ein allgemeines Element einer Heisenberg-Algebra kann geschrieben werden als

$ aQ+bP-i\hbar z.\, $

Die Exponentialfunktion eines Elementes einer Lie-Algebra ist dann ein Element der korrespondierenden Lie-Gruppe:

$ g=e^{aQ+bP-i\hbar z}, $

ein Element der Heisenberg-Gruppe. Gegeben sei eine spezielle Gruppendarstellung Φ der Heisenberggruppe, dann bezeichnet

$ \Phi\left( e^{aQ+bP-i\hbar z} \right)\, $

das Element der entsprechenden Darstellung des Gruppenelements g.

Die Inverse der obigen Weylfunktion ist die Wignerfunktion, welche den Operator Φ zurück zur Phasenraumfunktion f bringt:

$ f(q,p)= 2 \int_{-\infty}^\infty dy~e^{2ipy/\hbar}~ \langle q-y| \Phi [f] |q+y \rangle. $

Im Allgemeinen hängt die Funktion f von der Planck-Konstante h ab und kann quantenmechanische Prozesse gut beschreiben, sofern sie mit dem unten aufgeführten Sternprodukt richtig zusammengesetzt ist.[4]

Zum Beispiel ist die Wignerfunktion eines quantenmechanischen Operators für ein Drehimpulsquadrat (L²) nicht identisch mit dem klassischen Operator, sondern enthält zusätzlich den Term $ - \frac{3}{2}\hbar^2 $, welcher dem nichtverschwindenden Drehimpuls des Grundzustands einer Bohrschen Umlaufbahn entspricht.

Eigenschaften

Die typische Darstellung einer Heisenberg-Gruppe erfolgt durch die Generatoren ihrer Lie-Algebra: Ein Paar selbstadjungierter Operator (hermitesch) auf einem Hilbertraum $ \scriptstyle \mathcal{H} $, so dass ihr Kommutator, ein zentrales Element der Gruppe, das Identitätselement auf dem Hilbertraum ergibt (die kanonische Vertauschungsrelation)

$ [P,Q]=PQ-QP=-i\hbar ~ \operatorname{Id}_\mathcal{H}, $

Der Hilbertraum kann als Menge von quadratisch integrierbaren Funktionen über der reellen Zahlengerade (ebene Wellen) oder einer beschränkteren Menge, wie beispielsweise des Schwartz-Raum angenommen werden. Abhängig vom beteiligten Raum, folgen verschiedene Eigenschaften:

  • Wenn f eine reellwertige Funktion ist, dann ist das Abbild der Weyl-Funktion Φ[f] selbst-adjungiert.
  • Wenn f ein Element des Schwartz-Raum ist, dann ist Φ[f] ein Spurklasseoperator.
  • Allgemeiner ist Φ[f] unbeschränkter dicht definierter Operator.
  • Für die Standarddarstellung der Heisenberg-Gruppe über den quadratisch integrierbaren Funktionen, entspricht die Funktion Φ[f] eins-zu-eins dem Schwartz-Raum (als Unterraum der quadratisch integrierbaren Funktionen).

Verallgemeinerungen

Die Weyl-Quantisierung wird in größerer Allgemeinheit in Fällen untersucht, wo der Phasenraum eine Symplektische Mannigfaltigkeit oder möglicherweise eine Poisson-Mannigfaltigkeit ist. Verwandte Strukturen sind zum Beispiel Poisson–Lie-Gruppen und die Kac-Moody-Algebren.

Siehe auch

Referenzen

  1. H.Weyl , "Quantenmechanik und Gruppentheorie", Zeitschrift für Physik, 46 (1927) pp. 1–46, doi.
  2. H.J. Groenewold, "On the Principles of elementary quantum mechanics",Physica,12 (1946) pp. 405–460. (engl.)
  3. J.E. Moyal, "Quantum mechanics as a statistical theory", Proceedings of the Cambridge Philosophical Society, 45 (1949) pp. 99–124. (engl.)
  4. R. Kubo, "Wigner Representation of Quantum Operators and Its Applications to Electrons in a Magnetic Field", Jou. Phys. Soc. Japan,19 (1964) pp. 2127–2139, doi.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.01.2022
Satelliten | Raumfahrt | Astrophysik
James Webb Weltraumteleskop am Ziel
Die Wissenschaft kann möglicherweise bald erforschen, wie das Universum seinen Anfang nahm, denn das neue Weltraumteleskop James Webb hat seine Endposition erreicht.
17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.