Siloxane

Erweiterte Suche

Siloxane
Disiloxane.png

Disiloxan

Hexamethyldisiloxan.svg

Hexamethyldisiloxan,
ein di-Siloxan

Octamethyltrisiloxan.svg

Octamethyltrisiloxan,
ein tri-Siloxan

Decamethylcyclopentasiloxane.svg

Decamethylcyclopentasiloxan,
ein cyclisches Siloxan

Siloxane sind chemische Verbindungen mit der allgemeinen Formel R3Si−[O−SiR2]n−O−SiR3, wobei R Wasserstoffatome oder Alkylgruppen sein können.[1] Bei diesen Stoffgruppe liegen keine Si−Si-Bindungen vor; die Siliciumatome sind durch genau ein Sauerstoffatom mit ihrem benachbarten Siliciumatom verknüpft. Diese charakteristische Hauptkette kann über Si-Atome verzweigt sein oder cyclisch (sog. Cyclosiloxane) verlaufen. Oligomere oder polymere Organosiloxane (Siloxane mit R ≠ H) werden Silikone genannt und dort beschrieben.[2] Sie weisen lange Si−O-Hauptketten auf und dienen als Öle, Harze oder Kunststoffe.

Verwendung

Siloxane finden unter anderem in Kosmetika, Deodoranten, Seifen und Waschmitteln Verwendung. Besondere Bekanntheit und Bedeutung haben höhermolekulare Siloxane, die sogenannten Silikone.

In der Industrie finden Siloxane hauptsächlich in Form von Silikonölen als Entschäumer Anwendung, aber auch bei der Lyophilisation als Kälteträger.

Industrielle Herstellung

Siloxane können auf verschiedene Art und Weisen hergestellt werden. Die Autoren des Werkes Winnacker-Küchler: Chemische Technik führen als wichtigste Herstellungsweisen folge Methoden an:[3]

Siloxane in Klär- und Deponiegas

Siloxane können in geringen Konzentrationen (im Bereich 10 mg Silicium pro Normkubikmeter) in Klär- oder Deponiegas vorhanden sein. Bei Klärgas erfolgt der Siloxaneintrag durch Siedlungs- oder Industrieabwässer. Auf Deponien geht man eher von einer Zersetzung silikonhaltiger Abfälle in flüchtige Siloxane aus.

Siloxane werden bei der Verbrennung von Klär- und Deponiegas zum Problem, da aus dem Rohgas (z.B. im BHKW) festes Siliciumdioxid (Sand) entsteht, das zum Verschleiß der bewegten Teile der Anlagen führt. Weiß-graue Ablagerungen setzten sich auf Maschinenteile ab und werden über das Öl an alle beweglichen Teile der Maschine transportiert, wo sie zu Abrieb führen. Betroffene Teile sind v.a. Ventile, Zylinderköpfe, Turbinenschaufeln, Rohrleitungen.

Vor der Verbrennung in Gasmotoren werden Siloxane heute in der Regel durch Adsorption an Aktivkohle, Absorption oder Tieftemperaturkühlung (typischerweise bei Temperaturen unter -25 °C) zumindest teilweise entfernt. Neben diesen Techniken gibt es prinzipiell noch weitere Methoden der Siloxanabscheidung, darunter Adsorption mittels Silikagel, Aluminiumoxid oder katalytischen Materialien, Biofilter und Gaspermeation.[4] Ein typischer Grenzwert der meisten Gasmotorenhersteller für Silicium beträgt 5 mg Silicium pro Normkubikmeter Methan.

Aktivkohleadsorption

Aktivkohle verringert die Siloxankonzentrationen im Rohgas recht vollständig. Werte unter 0,1 mg Silicium pro Normkubikmeter sind typisch.[5] Ebenso werden auch die meisten anderen flüchtigen Kohlenwasserstoffe wie BTEX entfernt (was nicht unbedingt erforderlich ist). In der Tat führt die Anwendung von Aktivkohle bei Deponiegas zu einer relativ schnellen Erschöpfung der Beladungskapazität, da nicht nur Siloxane, sondern auch eine Vielzahl an flüchtigen Kohlenwasserstoffen adsorbiert. Deshalb wird der Aktivkohladsorption oft ein Trocknungsschritt (z.B. Kondensation bei 5 °C) vorgeschaltet, welcher die relative Feuchte nach Wiederaufheizung des Gases verringert und einen Großteil der hydrophilen Spurenstoffe im Rohgas vorab entfernen soll. Eine Regeneration der Aktivkohle erfolgt in der Regel nicht, die verbrauchte Aktivkohle wird mit einer frischen Charge ersetzt. Hauptkostenpunkt einer Aktivkohle-basierten Siloxanreinigung ist v.a. der notwendige Austausch der Aktivkohle.[6][7] Es werden jedoch auch kommerzielle Adsorptionssysteme angeboten, die das Adsorptionsmittel regenerieren.

Absorption

Eine breite Auswahl verschiedener Waschflüssigkeiten wurde untersucht, um Siloxane entweder physikalisch oder chemisch aus dem Rohgasstrom zu absorbieren.[8] Chemische Absorption (also die Zerstörung des Siloxanmoleküls) erfolgt prinzipiell bei niedrigen oder hohen pH-Werten. Da basische Waschflüssigkeiten in Verbindung mit dem Kohlenstoffdioxid im Biogas zur Karbonatbildung führen, kommen jedoch nur Säuren als Absorptionsmittel in Frage. Neben der Stärke der Säure ist auch eine erhöhte Temperatur für die Siloxanabsorption förderlich. Der Umgang mit heißen Säuren ist möglich, stellt jedoch eine gewisse Sicherheitsherausforderung dar. Physikalische Siloxanabsorption wurde vor allem mit Wasser, organischen Lösemitteln und Mineralöl getestet. Siloxane sind i.d.R. hydrophob, so dass Wasseradsorption (pH 7) keine nennenswerte Abreicherung bewirkt.[9] Die Verwendung des sauren Sumpfwassers des Absorbers als Waschflüssigkeit kann jedoch sinnvoll sein. Erfahrungen mit der Verwendung von Mineralöl zeigen eine relativ geringe Reinigungsleistung[10] und ergaben Probleme mit in den Gasmotor eingetragenem Öldampf.[7]

Tieftemperaturkühlung

Die Effektivität der Reinigungsleistung der Tieftemperaturkühlung hängt von der Kühltemperatur ab. Je höher die Siloxanbelastung im Rohgas, desto besser ist die relative Siliciumabscheidung bei der gewählten Kühltemperatur. Vor allem das leicht flüchtige Hexadimethylsiloxan (L2), welches in höheren Konzentrationen besonders in Deponiegasen vorhanden ist, lässt sich jedoch selbst bei Temperaturen um -40 °C nicht signifikant auskondensieren. Klärgas hingegen enthält wesentlich höhere Anteile von D4 und D5. Um die Gesamtsiliciumkonzentration zu verringern, ist Tieftemperaturkühlung bei Klärgas deshalb effektiver als bei Deponiegas. Mit der Temperaturabsenkung verbunden ist auch ein Kondensieren vieler weiterer Stoffe (v.a. Wasser). Da das dabei anfallende saure Kondensat mit dem Rohgas kontaktiert wird, ist auch von einer gewissen Absorption der Siloxane in das Kondensat auszugehen.

Siloxane im Abwasser

Auch bei der Membranfiltration sind Siloxane unerwünscht, da sie sich in die Poren der Membran einlagern und zu Fouling führen, welches durch Rückspülen und Einsatz von Chemikalien nur bedingt zu entfernen ist.[11]

Benennung

M-Gruppe: (CH3)3SiO½, D-Gruppe: (CH3)2SiO, T-Gruppe: (CH3)SiO2

Cyclische Siloxane Lineare Siloxane
D3: Hexamethylcyclotrisiloxan MM oder L2: Hexamethyldisiloxan
D4: Octamethylcyclotetrasiloxan MDM oder L3: Octamethyltrisiloxan
D5: Decamethylcyclopentasiloxan MD2M oder L4: Decamethyltetrasiloxan
D6: Dodecamethylcyclohexasiloxan MDnM oder PDMS: Polydimethylsiloxan

Einzelnachweise

  1. IUPAC, Gold Book: siloxanes
  2. IUPAC, Gold Book: silicones
  3. KAISER, W.; RIEDLE, R.: Silikone, In: Harnisch, H.; Steiner, R.; Winnacker, K. (Hrsg.): Winnacker-Küchler: Chemische Technologie, Organische Technologie I, I, 4. Auflage, Bd. 6, Carl Hanser Verlag, München, (1982), S. 830–834
  4. Ajhar, M.; Travesset, M.; Yüce, S.; Melin, T.;- Siloxane removal from landfill and digester gas – A technology overview, Bioresource Technology 101, 2913–2923, 2010
  5. Rossol, D.; Schmelz, K.-G.; Hohmann, R.; – Siloxane im Faulgas., KA – Abwasser Abfall 8,8, 2003.
  6. Wheless, E.P.; Jeffrey; – Siloxanes in Landfill and Digester Gas Update SWANA., 27th Landfill Gas Conference, March 22–25 2004.
  7. 7,0 7,1 Rossol, D.; Schmelz, K.-G.; Hohmann, R.; – Siloxane im Faulgas., KA – Abwasser Abfall 8,8 2003.
  8. Schweigkofler, M.; Niessner, R.; – Removal of siloxanes in biogases, Journal of Haradous Materials 83, 183–196, 2001.
  9. Rasi, S.; Lantela, J.; Veijanen, A.; Rintala, J.; – Landfill gas upgrading with countercurrent water wash., Waste Management 28, 1528–1534 2008.
  10. Martin, P.; Ellersdorfer, E.; Zemann, A.; – Auswirkungen flüchtiger Siloxane in Abwasser und Klärgas auf Verbrennungsmotoren. Korrespondenz Abwasser 43, 5, 1996
  11. Wilhelm, S. – Wasseraufbereitung Chemie und chemische Verfahrenstechnik, 7te Auflage, Springer Verlag, 2003, S. 126,127, ISBN 978-3-540-25163-7.

Weblinks

cosmos-indirekt.de: News der letzten Tage